Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Thạch Thành Thanh Hóa

Nội dung Đề HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Thạch Thành Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG huyện lớp 7 môn Toán năm 2020 2021 Đề HSG huyện lớp 7 môn Toán năm 2020 2021 Vào ngày Thứ Ba, 30 tháng 03 năm 2021, Phòng Giáo dục và Đào tạo huyện Thạch Thành, Thanh Hóa đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán cho học sinh lớp 7 trong năm học 2020 – 2021. Đề HSG của huyện Toán lớp 7 năm 2020 – 2021 do Phòng GD&ĐT Thạch Thành – Thanh Hóa tổ chức bao gồm một trang đề với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Như vậy, kỳ thi này là cơ hội không thể bỏ lỡ cho các học sinh có niềm đam mê, đam mê môn Toán và muốn thể hiện tài năng của mình. Đề thi được thực hiện chặt chẽ, chứa đựng những câu hỏi thú vị, đòi hỏi sự khéo léo, logic và kiến thức sâu rộng từ phía các thí sinh. Điều này nhằm mục đích kiểm tra và đánh giá khả năng tư duy, logic và kiến thức Toán của học sinh, từ đó chọn ra những "chiến binh" xứng đáng nhất để tiếp tục thi đấu ở các vòng sau. Kỳ thi này cũng là nơi để thể hiện sự kiên trì, quyết tâm và kỷ luật của các em học sinh, từ việc học tập đến việc chuẩn bị cho kỳ thi. Quả là một bước quan trọng để thể hiện bản lĩnh và đam mê của bản thân.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho đa thức F(x) = ax2 + bx + c trong đó a, b, c là các số hữu tỉ biết. Biết rằng F(0); F(1); F(2) đều có giá trị nguyên. Chứng minh rằng 2a là số nguyên. + Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC cân tại A, có ba góc đều là góc nhọn. Về phía ngoài của tam giác ABC vẽ các tam giác vuông cân: ABE vuông cân tại B, ACF vuông cân tại C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh: а) ЕAН = FAH. b) BI = CE và BI vuông góc với CE. c) Ba đường thẳng AH, CE, BF đồng quy.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Có hai chiếc hộp giống nhau. Trong mỗi hộp chứa 4 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4 (hai thẻ khác nhau thì ghi hai số khác nhau). Rút ngẫu nhiên một thẻ ở trong mỗi hộp. Tính xác suất để rút được hai thẻ ghi số giống nhau trong cùng một lần rút? + Cho tam giác ABC vuông tại A có AB = AC, có D là trung điểm BC. Trên đoạn BD lấy E (khác B, D), trên tia đối của tia CB lấy điểm F sao cho BE = CF. Kẻ các đường thẳng vuông góc với BC tại E cắt AB tại G, đường vuông góc với BC tại F cắt AC tại H. Gọi giao điểm của GH với BC là I a) Chứng minh BG = CH, IG = IH. b) Kẻ đường thẳng vuông góc với CA tại C, cắt AD tại M. Chứng minh MI vuông góc với GH. c) Đường thẳng vuông góc với DG tại D cắt AC tại K, chứng minh rằng AK + AG ≤ DG + DK. + Tìm số tự nhiên m, n sao cho 2 3 4 n m là số chính phương.