Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đáp án và lời giải chi tiết đề minh họa tốt nghiệp THPT 2021 môn Toán

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đáp án và lời giải chi tiết đề minh họa tốt nghiệp THPT 2021 môn Toán do thầy Lê Phúc Lữ tổng hợp và giới thiệu. 1. Bảng đáp án đề tham khảo kỳ thi tốt nghiệp THPT năm 2021 môn Toán. 1C 2D 3B 4D 5A 6A 7B 8C 9D 10A 11B 12A 13C 14B 15A 16A 17D 18A 19B 20D 21A 22B 23D 24C 25B 26B 27A 28D 29C 30C 31D 32A 33D 34D 35B 36A 37B 38A 39C 40A 41B 42C 43A 44C 45A 46A 47A 48D 49B 50C. 2. Phân tích sơ bộ. a. Cấu trúc đề (số câu từng chương). – (1) Chương Ứng dụng đạo hàm: 10. – (2) Chương Hàm số lũy thừa, mũ & logarit: 8. – (3) Chương Nguyên hàm & tích phân: 7. – (4) Chương Số phức: 6. – (5) Chương Thể tích khối đa diện: 3. – (6) Chương Khối tròn xoay: 3. – (7) Chương Hình giải tích trong không gian: 8. – (8) Lớp 11: + Đại số & giải tích: 3. + Hình học: 2. b. Nhận xét – Các câu khó, mức độ 4 thuộc về các phần: (1), (2), (3), (4), (7). – Các câu mức độ 3 có khoảng 10 câu và có đủ ở các phần, còn lại 35 câu mức 1-2. – Nội dung của lớp 11 chiếm 10%, các câu mức độ 1-2. – Các câu ở mỗi mức độ đang được sắp xếp theo từng chương (giống năm 2017), nhưng đề chính thức chắc không như thế. – So về mức độ thì đề này dễ hơn đề chính thức năm 2019 nhưng khó hơn đề năm 2020. – Không có xuất hiện phần: lượng giác, bài toán vận tốc, bài toán lãi suất, phương trình tiếp tuyến, khoảng cách đường chéo nhau. – Về 5 câu khó nhất (vận dụng cao): câu 46, biện luận số cực trị của hàm chứa trị tuyệt đối là khó nhất đề, đòi hỏi thực hiện nhiều bước; câu 47, 48, 49 đòi hỏi có các kinh nghiệm nhất định ở dạng này để chọn hướng tiếp cận đúng mới xử lý nhanh gọn được; câu 50 có nét mới là kết hợp nhiều chương: khối tròn xoay, tìm giá trị lớn nhất và hình giải tích Oxyz. – Thời gian lý tưởng để một học sinh muốn được 9+ đề này là: 35 câu đầu làm (và kiểm tra lại) trong 20 phút; 10 câu tiếp theo làm trong 30-40 phút; 5 câu cuối dành 30-40 phút còn lại làm được càng nhiều càng tốt. 3. Lời giải chi tiết đề minh họa kỳ thi tốt nghiệp THPT năm 2021 môn Toán.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường chuyên Biên Hòa - Hà Nam
Thứ Bảy ngày 04 tháng 07 năm 2020, trường THPT chuyên Biên Hòa, tỉnh Hà Nam tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thứ hai. Đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường chuyên Biên Hòa – Hà Nam mã đề 101 được biên soạn với cấu trúc tương tự đề tham khảo tốt nghiệp THPT Quốc gia môn Toán, đề gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án (đáp án được tô màu đỏ). Trích dẫn đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường chuyên Biên Hòa – Hà Nam : + Cho hai hàm số y = e^x và y = ln x. Xét các mệnh đề sau: (I) Đồ thị hai hàm số đối xứng qua đường thẳng y = x. (II) Tập xác định của hai hàm số trên là R. (III) Đồ thị hai hàm số cắt nhau tại đúng một điểm. (IV) Hai hàm số đều đồng biến trên tập xác định của nó. Có bao nhiêu mệnh đề sai trong các mệnh đề trên? [ads] + Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau: A. Tam giác BCD vuông. B. Hai cạnh đối của tứ diện vuông góc. C. Hình chiếu của A lên mặt phẳng (BCD) là trực tâm tam giác BCD. D. Ba mặt phẳng (ABC), (ABD), (ACD) đôi một vuông góc. + Cho tam giác đều ABC cạnh a. dB, dC lần lượt là đường thẳng đi qua B, C và vuông góc (ABC). (P) là mặt phẳng đi qua A và hợp với (ABC) một góc bằng 60 độ. (P) cắt dB, dC tại D và E. AD = a√6/2, AE = a√3. Đặt beta = DAE. Khẳng định nào sau đây là khẳng định đúng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường Phan Đình Phùng - Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Phan Đình Phùng – Quảng Bình, đề thi có cấu trúc và độ khó tương đương đề tham khảo tốt nghiệp THPT 2020 môn Toán, đề thi có mã đề 122 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Phan Đình Phùng – Quảng Bình : + Để tăng nhiệt độ trong phòng từ 18 độ C người ta sử dụng một cái máy sưởi (máy được phép hoạt động trong 9 phút). Gọi T (đơn vị 0C) là nhiệt độ phòng ở phút thứ t được cho bởi công thức T = −0,003t^3 + 0,9t^2 + 18 với t ∈ [1;12]. Tìm nhiệt độ cao nhất trong phòng đạt được trong thời gian 9 phút kể từ khi máy sưởi bắt đầu hoạt động. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Tính thể tích V của khối chóp S.BDM. + Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau, OA = a và OB = OC = 2a. Gọi M là trung điểm của BC (minh họa như hình bên). Khoảng cách giữa hai đường thẳng OM và AC.
Đề thi thử tốt nghiệp THPT năm 2020 môn Toán sở GDĐT tỉnh Kon Tum
Ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo UBND tỉnh Kon Tum tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT năm 2020 môn Toán sở GD&ĐT tỉnh Kon Tum mã đề 135 gồm có 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án mã đề 135, 257, 427, 136. Trích dẫn đề thi thử tốt nghiệp THPT năm 2020 môn Toán sở GD&ĐT tỉnh Kon Tum : + Ông An gởi tiền vào ngân hàng với thể thức lãi suất kép theo công thức Tn = A(1 + r)^n, trong đó A là số tiền gởi ban đầu, r là lãi suất, n là kỳ hạn, Tn là số tiền cả gốc lẫn lãi sau n kỳ hạn gởi. Nếu số tiền ban đầu ông An gởi 100 triệu đồng vào ngân hàng với lãi suất 6,5% một năm và không rút lãi lẫn gốc định kỳ thì sau bao nhiêu năm ông ấy nhận được số tiền ít nhất là 250 triệu đồng? [ads] + Cho một đa giác đều có 2n đỉnh (n ≥ 2 và n thuộc N). Chọn ngẫu nhiên ba đỉnh trong số 2n đỉnh của đa giác đó, biết xác suất ba đỉnh được chọn tạo thành một tam giác vuông là 1/5. Giá trị của n bằng? + Cho hình nón tròn xoay có chiều cao h = 20, bán kính đáy r = 25. Cắt hình nón đã cho bởi một mặt phẳng đi qua đỉnh của hình nón và khoảng cách từ tâm của đáy hình nón đến mặt phẳng này bằng 12. Diện tích thiết diện thu được bằng?
Đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường THPT Đặng Thúc Hứa - Nghệ An
Ngày … tháng 07 năm 2020, trường THPT Đặng Thúc Hứa, tỉnh Nghệ An tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thứ hai dành cho học sinh khối 12 của nhà trường. Đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường THPT Đặng Thúc Hứa – Nghệ An mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường THPT Đặng Thúc Hứa – Nghệ An : + Để dự báo tốc độ tăng trưởng bình quân GDP (“Bình quân GDP” được hiểu là thu nhập bình quân đầu người) của một quốc gia, người ta sử dụng công thức An = A0(1 + a)^n, trong đó A0 là bình quân GDP của năm lấy làm mốc, An là bình quân GDPsau n năm, a là tỉ lệ tăng trưởng bình quân GDP hàng năm. Ngày 1/1/2018, Việt Nam có bình quân GDP là 2.500 USD và tốc độ tăng trưởng bình quân GDP là 7,5%; Thái Lan có bình quân GDP là 7.200 USD và tốc độ tăng trưởng bình quân GDP là 4,3%. Nếu tốc độ tăng trưởng bình quân GDP của hai nước không thay đổi thì sớm nhất đến năm bao nhiêu, bình quân GDP của Việt Nam và Thái Lan bằng nhau? [ads] + Cho tứ diện ABCD. Tam giác ABC là tam giác vuông tại A, tam giác ABD là tam giác vuông tại B. Gọi P, Q lần lượt là các điểm trên đoạn thẳng AB, CD sao cho AB = 3AP, CD = 3CQ. Biết AB = a, AC = 3a, BD = 3a, PQ = a√7. Thể tích khối tứ diện ABCD là? + Cho hàm số y = f(x) xác định, liên tục trên và có bảng biến thiên như sau. Tìm giá trị cực đại yCD và giá trị cực tiểu yCT của hàm số đã cho.