Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng mặt cầu, khối cầu

Tài liệu gồm 29 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề mặt cầu, khối cầu, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2: Mặt nón – mặt trụ – mặt cầu. Mục tiêu : Kiến thức : + Nắm được các trường hợp giao của mặt cầu với mặt phẳng, giao của mặt cầu với đường thẳng, vị trí của một điểm với mặt cầu. + Nắm vững công thức tính diện tích mặt cầu và thể tích khối cầu. Kĩ năng : + Biết vẽ hình trong từng bài toán cụ thể. + Biết tính bán kính, diện tích của mặt cầu và thể tích của khối cầu. + Giải được các bài toán liên quan đến khối cầu như bài toán tương giao với đường thẳng hay mặt phẳng, bài toán cực trị, bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Câu hỏi lí thuyết về mặt cầu, khối cầu. Cần nắm vững phần kiến thức trọng tâm ở trên. Dạng 2 . Tính bán kính, diện tích mặt, thể tích khối cầu. Bài toán tương giao của mặt cầu với đường thẳng hay mặt phẳng. Nắm vững các công thức tính diện tích và thể tích. Nắm vững các trường hợp tương giao của mặt cầu với đường thẳng hay mặt phẳng để rồi vận dụng các kiến thức của phần quan hệ song song, quan hệ vuông góc, các hệ thức lượng trong tam giác … để giải các bài tập. Dạng 3 . Mặt cầu ngoại tiếp hình đa diện. Các khái niệm cần lưu ý: + Mặt cầu ngoại tiếp hình đa diện: là mặt cầu mà nó đi qua tất cả các đỉnh của hình đa diện. Tâm của mặt cầu ngoại tiếp cách đều tất cả các đỉnh của hình đa diện. + Trục của đa giác: là đường thẳng đi qua tâm của đường tròn ngoại tiếp đa giác và vuông góc với mặt phẳng chứa đa giác. Mọi điểm nằm trên trục thì cách đều các đỉnh của đa giác và ngược lại. + Mặt phẳng trung trực của đoạn thẳng: Là mặt phẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng đó. Mọi điểm nằm trên mặt phẳng trung trực của đoạn thẳng thì cách đều hai điểm mút của đoạn thẳng và ngược lại. Phương pháp giải: Đối với bài toán mặt cầu ngoại tiếp khối đa diện thì mấu chốt của vấn đề là phải xác định được tâm của mặt cầu ngoại tiếp khối đa diện đó. Khi xác định được tâm của mặt cầu ngoại tiếp thì ta có thể tính được các yếu tố còn lại như bán kính, diện tích mặt cầu, thể tích của khối cầu. + Cách 1. Tìm một điểm cách đều các đỉnh của khối đa diện theo định nghĩa mặt cầu. + Cách 2. Tâm mặt cầu ngoại tiếp khối đa diện là giao điểm của trục đường tròn ngoại tiếp đa giác đáy và mặt phẳng trung trực của một cạnh bên. + Cách 3. Dựa vào trục của đường tròn ngoại tiếp đa giác đáy và trục của đường tròn ngoại tiếp một mặt bên. Dạng 4 . Mặt cầu nội tiếp khối đa diện. Mặt cầu nội tiếp khối đa diện là mặt cầu tiếp xúc với tất cả các mặt của khối đa diện. Phương pháp giải: Xác định được và hiểu rõ khoảng cách từ tâm của mặt cầu nội tiếp khối đa diện tới các mặt của khối đa diện chính là bán kính của mặt cầu nội tiếp khối đa diện. Từ đó có thể tính được bán kính, diện tích xung quanh của mặt cầu, thể tích của khối cầu và giải được các bài toán liên quan. Dạng 5 . Bài toán cực trị. Tương tự như bài toán cực trị về hình nón, hình trụ ta thường đánh giá trực tiếp dựa vào hình hoặc biểu diễn hay quy đại lượng cần tìm cực trị phụ thuộc vào một yếu tố sau đó đánh giá tìm ra đáp án. Dạng 6 . Bài toán thực tế. Nắm vững kiến thức các dạng toán trên để giải bài toán thực tế liên quan đến mặt cầu. Dạng 7 . Dạng toán tổng hợp. Sử dụng kiến thức về hình nón, hình trụ, hình cầu ở các dạng toán trên để giải bài toán tổng hợp.

Nguồn: toanmath.com

Đọc Sách

350 câu hỏi trắc nghiệm chuyên đề hình học không gian - Nhóm Toán
Tài liệu 350 câu hỏi trắc nghiệm chuyên đề hình học không gian được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 62 trang được chia thành 7 đề, mỗi đề gồm 50 câu hỏi. Trích dẫn tài liệu : + Chọn khẳng định đúng: A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì hai đường thẳng đó song song với nhau C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau B. Tồn tại một hình đa diện có số cạnh bằng số đỉnh C. Số đỉnh và số mặt của một hình đa diện luôn luôn bằng nhau D. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau + Cho khối tứ diện đều ABCD. Điểm M thuộc miền trong của khối tứ diện sao cho thể tích các khối MBCD, MCDA, MDAB, MABC bằng nhau. Khi đó: A. Tất cả các mệnh đề trên đều đúng B. M cách đều tất cả các mặt của khối tứ diện đó C. M là trung điểm của đôạn thẳng nối trung điểm của 2 cạch đối diện của tứ diện D. M cách đều tất cả các đỉnh của khối tứ diện đó
225 bài toán hình học không gian trong các đề thi thử 2016 - Trần Văn Tài
Tài liệu 225 bài toán hình học không gian trong các đề thi thử 2016 do thầy Trần Văn Tài biên soạn, các bài toán được giải chi tiết. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a√3. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết đường thẳng SD tạo với mặt đáy một góc 45 độ. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và BD. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Đường thẳng SA vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 độ. 1. Tính thể tích khối chóp S.ABC theo a. 2. Tính khoảng cách giữa hai đường thẳng AC và SB theo a.