Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2019 trường THPT Hoàng Hoa Thám - Hưng Yên

giới thiệu đến bạn đọc nội dung đề thi thử Toán THPTQG 2019 trường THPT Hoàng Hoa Thám – Hưng Yên, nhằm giúp bạn đọc ôn tập để chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019, đề được biên soạn bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, tuy nhiên nội dung chỉ giới hạn đến các phần kiến thức đã học, đề có mã 061 gồm 7 trang với 50 câu trắc nghiệm, học sinh hoàn thành bài thi trong 90 phút, đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG 2019 trường THPT Hoàng Hoa Thám – Hưng Yên : + Một cái thùng đựng đầy nước được tạo thành từ việc cắt mặt xung quanh của một hình nón bởi một mặt phẳng vuông góc với trục của hình nón. Miệng thùng là đường tròn có bán kính bằng ba lần bán kính mặt đáy của thùng. Người ta thả vào đó một khối cầu có đường kính bằng 3/2 chiều cao của thùng nước và đo được thể tích nước tràn ra ngoài là 54π√3 (dm3). Biết rằng khối cầu tiếp xúc với mặt trong của thùng và đúng một nửa của khối cầu đã chìm trong nước (hình vẽ). Thể tích nước còn lại trong thùng có giá trị nào sau đây? [ads] + Một học sinh A trường THPT Hoàng Hoa Thám, Hưng Yên khi 15 tuổi được hưởng tài sản thừa kế 200 000 000 VNĐ. Số tiền này được bảo quản trong một ngân hàng B với kì hạn thanh toán 1 năm và học sinh A chỉ nhận được số tiền này khi 18 tuổi. Biết rằng khi 18 tuổi, số tiền mà học sinh A được nhận sẽ là 231 525 000 VNĐ. Vậy lãi suất kì hạn 1 năm của ngân hàng B là bao nhiêu? + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy P sao cho BP = 2PD. Khi đó giao điểm của đường thẳng CD với mp (MNP) là? A. Giao điểm của MP và CD. B. Giao điểm của NP và CD. C. Giao điểm của MN và CD. D. Trung điểm của CD.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2020 - 2021 sở GDĐT Sóc Trăng
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán, ngày 28 tháng 05 năm 2021, sở Giáo dục và Đào tạo tỉnh Sóc Trăng tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021. Đề khảo sát chất lượng Toán 12 năm 2020 – 2021 sở GD&ĐT Sóc Trăng gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2020 – 2021 sở GD&ĐT Sóc Trăng : + Để chào mừng xã đạt chuẩn nông thôn mới, Ủy ban nhân dân xã X tiến hành ốp gạch trang trí hai bên bề mặt cổng chào vào xã. Cổng chào được thiết kế như hình bên với các đường viền cổng là dạng đường Parabol. Biết rằng tiền vật liệu cho một mét vuông bề mặt cổng bằng 1.000.000 đồng và tiền công thì cho một mét vuông là 200.000 đồng. Tổng kinh phí trang trí cổng chào bằng? + Trong không gian Oxyz, cho hình nón (N) có đỉnh S(3;-1;4) và tâm đường tròn đáy là I(9;2;-2). Hình trụ (T) có một đường tròn đáy tâm I, đường tròn đáy còn lại có tâm J và nằm trên mặt xung quanh của hình nón (N). Khi (T) có thể tích lớn nhất thì mặt phẳng chứa đường tròn tâm J có phương trình dạng 2x + bx + cz + d = 0. Tính P = abc. + Trong không gian Oxyz, cho điểm K(3;-2;1) và mặt cầu (S): x2 + y2 + z2 – 2x + 6z – 6 = 0. Viết phương trình đường thẳng delta đi qua K và cắt mặt cầu (S) tại hai điểm M, N sao cho độ dài đoạn thẳng MN lớn nhất.
Đề khảo sát chất lượng Toán 12 THPT năm 2020 - 2021 lần 1 sở GDĐT Hà Nội
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2021 môn Toán, tối thứ Sáu ngày 28 tháng 05 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 THPT năm học 2020 – 2021 lần thứ nhất; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online). Đề khảo sát chất lượng Toán 12 THPT năm 2020 – 2021 lần 1 sở GD&ĐT Hà Nội gồm 50 câu trắc nghiệm, thời gian làm bài 90 phút; đáp án và điểm số bài thi được công bố ngay sau khi thí sinh hoàn tất bài thi.
20 đề ôn thi tốt nghiệp THPT 2021 môn Toán dành cho học sinh TB - Yếu
Tài liệu gồm 320 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập 20 đề thi thử ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021 (có đáp án và lời giải chi tiết) dành cho đối tượng học sinh có học lực trung bình – yếu. Trích dẫn tài liệu 20 đề ôn thi tốt nghiệp THPT 2021 môn Toán dành cho học sinh TB – Yếu: + Ta biết rằng mỗi cách chọn ra 2 số bất kỳ từ tập X luôn có tổng hoặc là một số dương hoặc là một số âm hoặc bằng 0. Mà ta có tập X đối xứng nên xác suất để lấy được hai số có tổng dương sẽ luôn bằng xác suất lấy được hai số có tổng âm. Gọi B là biến cố “Hai số lấy được có tổng bằng 0”. Ta có B n B 1 1 2 2 3 3 4 4 4. Xác suất của biến cố B là: 4 1 28 7 n B p B n. Suy ra xác suất của biến cố A là: 1 3 2 7 p B p A. + Cho hàm số 4 2 y ax bx c a 0 có đồ thị như hình bên. Xác định dấu của a b c. Lời giải: Dựa vào hình dáng đồ thị ta có a 0. Đồ thị hàm số có ba điểm cực trị suy ra a b trái dấu mà a 0 suy ra b 0. Đồ thị cắt trục tung tại điểm có tung độ âm, suy ra c 0. + Hàm số nào sau đây có đồ thị như hình vẽ? Lời giải: Từ đồ thị, ta suy ra hàm số cần tìm là hàm bậc ba có hệ số của 3 x là số dương. Hàm số 3 y x x f x 1 có 2 y x x 3 1 0, nên hàm số f x không có cực trị. Ta loại đáp án này. Xét hàm số 3 2 y x x x 2 1. Ta có 2 y x x 3 4 1; 1 0 1 3 y x x. Suy ra hàm số có 2 cực trị. Và đồ thị hàm số qua điểm 0 1. Vậy đáp án đúng là 3 2 y x x x 2 1.
Đề khảo sát chất lượng Toán 12 cuối năm học 2020 - 2021 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng Toán 12 cuối năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Hà Nam; kỳ thi nhằm kiểm tra chất lượng học tập của học sinh lớp 12 trước khi các em bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề khảo sát chất lượng Toán 12 cuối năm học 2020 – 2021 sở GD&ĐT Hà Nam : + Trong không gian Oxyz, cho hình thoi ABCD có diện tích bằng 12 2. Biết A nằm trên trục Oz, C nằm trong mặt phẳng Oxy, hai điểm B và D nằm trên đường thẳng 1 1 1 2 x y z d trong đó B có hoành độ dương. Điểm D có tọa độ là? + Cho đồ thị 4 2 C y x x m 4, biết C cắt trục hoành tại 4 điểm phân biệt. Gọi 1 2 S S lần lượt là diện tích các hình phẳng 1 2 H H giới hạn bởi C và trục hoành trong đó H1 là phần phía trên, H2 là phần phía dưới trục hoành. Tính m khi 1 2. + Cho số thực a 0, biết rằng phương trình 3 2 ax x x 12 15 2021 0 có ba nghiệm thực phân biệt. Số nghiệm thực của phương trình 2 3 2 2 4 12 15 2021 3 12 3 24 15 ax x x ax ax x là?