Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu

Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa

Nguồn: toanmath.com

Đọc Sách

Bài tập vận dụng min - max hình học không gian có lời giải chi tiết
giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.
Phân dạng và bài tập trắc nghiệm mặt cầu - mặt trụ - mặt nón - Nguyễn Bảo Vương
Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương phân dạng và tuyển chọn các bài tập trắc nghiệm mặt cầu – mặt trụ – mặt nón có đáp án, các bài tập chủ yếu được trích dẫn từ các đề thi thử Toán THPT Quốc gia. Bài 1 . Hình nón – khối nón Dạng 1. Tính đường sinh, đường cao, bán kính đường tròn đáy Dạng 2. Tính diện tích xung quanh – diện tích toàn phần Dạng 3. Tính thể tích khối nón Dạng 4. Bài toán liên quan đến thiết diện khối nón Dạng 5. Bài toán liên đến nội ngoại tiếp của hình nón Dạng 6. Bài toán liên quan đến min-max khối nón Dạng 7. Bài toán thực tế liên quan đến khối nón Bài 2 . Hình trụ – khối trụ Dạng 1. Tính độ dài đường cao, bán kính đáy. Dạng 2. Tính diện tích xung quanh, diện tích toàn phần Dạng 3. Tính thể tích [ads] Dạng 4. Bài toán liên quan đến thiết diện Dạng 5. Bài toán liên quan đến nội ngoại tiếp của hình trụ Dạng 6. Bài toán min – max Dạng 7. Bài toán thực tế Bài 3 . Hình cầu – khối cầu  Dạng 1. Tính bán kính khối cầu Dạng 2. Tính diện tích mặt cầu Dạng 3. Tính thể tích khối cầu Dạng 4. Bài toán liên quan đến thiết diện, dây cung Dạng 5. Bài toán liên quan đến mặt cầu nội tiếp – ngoại tiếp khối đa diện Dạng 6. Bài toán min – max Dạng 7. Bài toán thực tế
Bài tập trắc nghiệm Hình học 12 chuyên đề nón - trụ - cầu
Với mong muốn giúp các em học sinh có thể trang bị thêm cho mình hành trang trong kỳ thi THPT Quốc Gia năm 2018 sắp tới, chúng tôi đã cố gắng cho ra đời tài liệu Chuyên đề NÓN – TRỤ – CẦU. Tài liệu này được chia thành 3 phần căn bản: • Phần 1: Trình bày lý thuyết căn bản về mặt nón, mặt trụ, mặt cầu. Những lý thuyết này bao gồm những kiến thức đã nêu trong sách giáo khoa và một số kiến thức bổ sung khác. • Phần 2: Một số dạng toán và phương pháp giải được trình bày chi tiết, rõ ràng. Mỗi dạng đều kèm theo ví dụ minh họa và một số bài tập giúp học sinh rèn luyện. • Phần 3: Bài tập tổng hợp cho từng bài. Các bài tập này chủ yếu trích từ các đề thi thử năm 2017 của các trường trong cả nước. [ads] Tài liệu được biên soạn hết sức tâm huyết bởi các thầy, cô giáo: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh. Bạn đọc có thể xem thêm các chuyên đề mặt nón – mặt trụ – mặt cầu khác tại đây.
Lý thuyết và bài tập hình học không gian - Nguyễn Tất Đỉnh
Tài liệu gồm 64 trang tổng hợp lý thuyết, phân dạng toán và tuyển chọn bài tập trắc nghiệm hình học không gian, tài liệu được biên soạn bởi thầy Nguyễn Tất Đỉnh. Nội dung tài liệu : + Phần 1. Tổng hợp lý thuyết khối đa diện và các kiến thức liên quan. + Phần 2. Phân dạng bài toán hình học không gian kèm các ví dụ minh họa có lời giải. + Phần 3. Tuyển chọn bài tập trắc nghiệm hình không gian có đáp án và lời giải chi tiết. [ads] Xem thêm : + Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu – Trần Đình Cư + Bài tập trắc nghiệm chuyên đề khối đa diện, mặt nón – trụ – cầu – Đặng Việt Đông + Chuyên đề hình học không gian dành cho học sinh trung bình – yếu