Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Đắk Nông

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đắk Nông gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đắk Nông : + Một tô chạy từ A đến B với quãng đường dài 80 km trong một thời gian dự định. Vì trời mưa nên một phần tư quãng đường đầu ô tô phải chạy chậm hơn vận tốc dự định là 15 km/h. Để đến B đúng thời gian dự định nên quãng đường còn lại ô tô phải tăng vận tốc hơn vận tốc dự định là 10km/h. Tính thời gian dự định của ô tô. (Giả thiết xe chạy liên tục không nghỉ). + Cho đường tròn (O; R). Một đường thẳng d không đi qua tâm O cắt đường tròn tại hai điểm A và B, trên tia đối của tia AB lấy một điểm M. Từ điểm M kẻ hai tiếp tuyến MC và MD với đường tròn (O) (C; D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB. 1. Chứng minh bốn điểm M, D, O, H cùng nằm trên một đường tròn. 2. Đoạn thẳng OM cắt đường tròn (O) tại I. Chứng minh điểm I là tâm đường tròn nội tiếp tam giác MCD. [ads] 3. Vẽ một đường thẳng qua điểm O vuông góc với đoạn thẳng OM và cắt các tia MC, MD theo thứ tự hai điểm P và Q. Tìm vị trí của điểm M trên đường thẳng d sao cho diện tích tam giác MPQ nhỏ nhất. + Cho hai số dương x, y thỏa mãn x+y = 1. Tìm giá trị nhỏ nhất của biểu thức A = 1/x2 + y2 + 1/xy.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Đắk Lắk
Đề Toán tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Đắk Lắk được biên soạn vào tổ chức thi vào ngày 08/06/2018 nhằm giúp các trường THPT tại tỉnh Đắk Lắk có cở sở để tuyển chọn các em học sinh phù hợp với tiêu chí của trường để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 chuyên Lê Quý Đôn - Bà Rịa - Vũng Tàu
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh có 120 phút để làm bài, kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2018, đề thi có lời giải chi tiết .