Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 11 môn Toán năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình

Nội dung Đề thi HSG lớp 11 môn Toán năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình Bản PDF Đề thi HSG Toán lớp 11 năm học 2018 – 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001 gồm 3 trang, đề gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 4 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 11 giỏi môn Toán để bổ sung vào đội tuyển HSG Toán lớp 11 của nhà trường. Trích dẫn đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình : + Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm các cạnh SA, SB Gọi M là điểm bất kì trên cạnh BC (không trùng với B, C). Thiết diện của mặt phẳng (MEF) với hình chóp S.ABCD là: A. Hình tam giác. B. Hình bình hành. C. Hình thoi. D. Hình thang. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, biết SA vuông góc với mặt phẳng (ABCD). Biết góc giữa hai mặt phẳng (SBC) và (SAD) bằng 45 độ. Gọi E, M lần lượt là trung điểm của SC và SA. Tính khoảng cách giữa hai đường thẳng DM và BE. + Số phương trình tiếp tuyến của đồ thị hàm số y = x^3/3 – 2x^2 + 3x + 1, biết tiếp tuyến song song với đường thẳng d: y = 8x – 97/3 và cắt trục hoành tại điểm có hoành độ dương là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán lớp 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. File WORD (dành cho quý thầy, cô):
Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội Bản PDF Sytu giới thiệu đến bạn đọc đề thi Olympic Toán lớp 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.
Đề học sinh giỏi lớp 11 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội Bản PDF Đề học sinh giỏi Toán lớp 11 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 cấp trường năm 2018 – 2019 trường Lưu Hoàng – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông. b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tính giá trị nhỏ nhất của đoạn SK. + Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng địa chỉ. + Trong mặt phẳng Oxy, cho đường tròn (C1), đường tròn (C2). a) Tìm giao điểm của hai đường tròn (C1) và (C2). b) Gọi giao điểm có tung độ dương của (C1) và (C2) là A viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau.