Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT An Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi tác giả Đặng Lê Gia Khánh). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT An Giang : + Cho phương trình bậc hai ẩn 𝑥, 𝑛 là tham số: 𝑛𝑥2 − 2(𝑛 + 1)𝑥 + 𝑛 = 0. a. Tìm 𝑛 để phương trình có hai nghiệm phân biệt 𝑥1; 𝑥2. b. Chứng minh rằng |𝑥1 − 𝑥2| ≤ 2√3 với mọi số 𝑛 nguyên dương. + Cho tam giác 𝐴𝐵𝐶 vuông tại 𝐶 (𝐴𝐶 > 𝐵𝐶), 𝐵𝐶 = 2. Biết rằng đường tròn (𝑂) qua ba điểm 𝐴, 𝐵, 𝑀 (𝑀 là trung điểm của 𝐵𝐶) cắt 𝐴𝐶 tại 𝐿 với 𝐵𝐿 là tia phân giác của góc 𝐴𝐵𝐶. a. Chứng minh 𝐶𝐴. 𝐶𝐿 = 2. b. Chứng minh 𝐴𝐵. 𝐿𝐶 = 𝐵𝐶. 𝐿𝑀. c. Tính độ dài cạnh 𝐴𝐵. + Một nông dân thu hoạch 100 trái dưa lưới có khối lượng trung bình là 1,5 kg. Trong 100 trái này có các trái dưa lưới nặng hơn 1,5 kg có khối lượng trung bình là 1,73 kg, các trái dưa lưới nhẹ hơn 1,5 kg có khối lượng trung bình là 1,33 kg và các trái dưa lưới nặng đúng 1,5 kg. a. Tìm biểu thức liên hệ giữa số trái dưa lưới theo khối lượng của chúng. b. Có ít nhất bao nhiêu trái dưa lưới nặng đúng 1,5 kg?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 phòng GD ĐT Nghĩa Đàn Nghệ An Đề thi thử Toán vào lần 2 năm 2022-2023 phòng GD ĐT Nghĩa Đàn Nghệ An Sytu xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng điểm qua đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022-2023 do phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An tổ chức. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm các giá trị của a, b để đường thẳng (d): y = ax + b song song với đường thẳng (d): y = -3x + 5 và đi qua điểm M thuộc đồ thị hàm số y = -x^2 có hoành độ bằng -2. 2. Seagame 31 sẽ diễn ra tại Việt Nam từ ngày 12/05/2022 đến ngày 23/05/2022. Siêu thị Điện Máy Xanh đã giảm giá nhiều mặt hàng điện tử để kích cầu mua sắm trong dịp này. Giá niêm yết của một chiếc Tivi và một tủ lạnh là 24,4 triệu đồng. Sau khi giảm giá, Cô Liên đã mua hai sản phẩm trên với tổng số tiền là 16,77 triệu đồng. Hãy tính giá mỗi món đồ trước khi giảm giá. 3. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC vào đường tròn (O). Chứng minh rằng tứ giác ABOC nội tiếp đường tròn và các mệnh đề khác liên quan đến đường tròn và các điểm E, F, H, K, M. Hy vọng rằng các em sẽ ôn tập và làm bài thi thật tốt. Chúc các em thành công!
Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bình Lục Hà Nam
Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bình Lục Hà Nam Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 phòng GD ĐT Bình Lục Hà Nam Đề thi thử Toán vào năm 2022-2023 phòng GD ĐT Bình Lục Hà Nam Chào mừng đến với Đề thi thử Toán môn Toán tuyển sinh vào lớp 10 THPT năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam. Dưới đây là một số câu hỏi thú vị và phức tạp trong đề thi: 1. Cho Parabol (P): y = x^2 và đường thẳng (d): y = (2m + 1)x - 2m với m là tham số. Trong các điểm M, N, điểm nào thuộc (P)? Tìm m để (P) cắt (d) tại hai điểm phân biệt A(x1;y1), B(x2;y2). 2. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), (AB < AC). Ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh tứ giác BFEC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BFEC. Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KF.KE = KB.KC. Đường thẳng AK cắt đường tròn (O) tại M (M khác A). Chứng minh MAF = MEF. Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. 3. Cho a, b, c là các số dương. Chứng minh abc
Đề thi thử Toán vào năm 2022 2023 trường THCS Vĩnh Quang Thanh Hóa
Nội dung Đề thi thử Toán vào năm 2022 2023 trường THCS Vĩnh Quang Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 trường THCS Vĩnh Quang Thanh Hóa Đề thi thử Toán vào năm 2022-2023 trường THCS Vĩnh Quang Thanh Hóa Chào quý thầy cô và các em học sinh lớp 9! Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2022-2023 trường THCS Vĩnh Quang, chúng tôi xin giới thiệu đề thi thử môn Toán. Kỳ thi sẽ diễn ra vào ngày 27 tháng 05 năm 2022. Dưới đây là một số câu hỏi trích từ đề thi thử Toán vào lớp 10 năm học 2022-2023 trường THCS Vĩnh Quang - Thanh Hóa: 1. Cho hàm số y = mx + n (với m khác 0). Tìm m và n sao cho đồ thị hàm số đó (đường thẳng) song song với đường thẳng y = -x + 2021 và đi qua điểm A(1;2022). 2. Giải phương trình x2 + 5x + m - 2 = 0 (với m là tham số) để có hai nghiệm phân biệt x1 và x2. 3. Trong đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại điểm H. Với điểm C nằm ngoài đường tròn sao cho AC cắt đường tròn tại K (khác A) và dây MN cắt dây BK tại E. Chứng minh tứ giác AHEK nội tiếp và tam giác NFK cân. Mong rằng đề thi thử này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An
Nội dung Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 do phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An tổ chức. Trích đề thi thử Toán vào 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An: Cho phương trình: x2 – 2x + m – 1 = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = -7 b) Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn hệ thức 2x1 + 2x2 + x12x22 = 8. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để tham gia kỷ niệm ngày sinh của Bác 19/05, trường THCS A dự định lấy 120 học sinh gồm nam và nữ tham gia diễu hành. Nhưng sau đó ban tổ chức đã cắt giảm 20% số học sinh nam và 10% số học sinh nữ, do vậy tổng số học sinh tham gia diễu hành ít hơn dự kiến ban đầu là 17 em. Tính số học sinh nam và nữ dự định lấy để tham gia diễu hành. Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CA lấy điểm E. Qua điểm C vẽ đường thẳng vuông góc với BE tại F. a) Chứng minh tứ giác BOCF là tứ giác nội tiếp. b) Gọi H là giao điểm của OF và BC. Chứng minh CH.FC = BH.FE. c) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O) tại G. Chứng minh D, H, G thẳng hàng.