Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Giải tích

Tài liệu gồm 559 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM 3. BÀI 1 – SỰ BIẾN THIÊN CỦA HÀM SỐ 3. Tóm tắt lý thuyết cơ bản 3. Dạng toán cơ bản 3. + Dạng ➀: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 3. + Dạng ➁: Tính đơn điệu của f(x), g(u) biết các đồ thị không tham số 8. + Dạng ➂: Tính đơn điệu của f(x), g(u) biết các BBT, BXD 11. + Dạng ➃: Tính đơn điệu f(x), g(u) liên quan biểu thức đạo hàm 24. + Dạng ➄: Tính đơn điệu của hàm liến kết h(x) = f(u) + g(x) biết các BBT, BXD 25. + Dạng ➅: Tính đơn điệu của hàm g(x) khi biết đồ thị, BBT của f(u) 29. + Dạng ➆: Tìm tham số để hàm bậc nhất trên bậc nhất đơn điệu 30. + Dạng ➇: Tính đơn điệu của hs chứa dấu GTTĐ có tham số biết đồ thị, BBT 38. BÀI 2 – CỰC TRỊ CỦA HÀM SỐ 40. Tóm tắt lý thuyết cơ bản 40. Dạng toán cơ bản 41. + Dạng ➀: Cực trị của một hàm số cho bởi một công thức và các câu hỏi liên quan 41. + Dạng ➁: Cực trị f(x), f(u) biết các đồ thị không tham số 43. + Dạng ➂: Cực trị f(x), f(u) biết các BBT, BXD không tham số 51. + Dạng ➃: Cực trị f(x), f(u) liên quan biểu thức đạo hàm không tham số 69. + Dạng ➄: Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức khi biết đồ thị, BBT 78. + Dạng ➅: Tìm tham số để f(x) đạt cực trị tại 1 điểm x0 cho trước 84. + Dạng ➆: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 3 thỏa mãn ĐK 87. + Dạng ➇: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 4 trùng phương thỏa mãn ĐK (không GTTĐ) 92. + Dạng ➈: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 94. + Dạng ➉: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 95. BÀI 3 – GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT 103. Tóm tắt lý thuyết cơ bản 103. Dạng toán cơ bản 103. + Dạng ➀: GTLN, GTNN của f(x) trên đoạn biết biểu thức f(x) 104. + Dạng ➁: GTLN, GTNN của f(x) trên khoảng biết biểu thức f(x) 115. + Dạng ➂: GTLN, GTNN của hàm số g(x) biết các BBT, đồ thị 116. + Dạng ➃: Bài toán ứng dụng, tối ưu, thực tế 118. + Dạng ➄: GTLN, GTNN liên quan hàm số hợp g(f(x)), f(u(x)) khi biết các đồ thị, BBT 121. + Dạng ➅: Tìm m để hs f(x) có GTLN, GTNN thỏa mãn đk cho trước 123. + Dạng ➆: Tìm tham số để hs chứa dấu GTTĐ, hàm hợp, hàm liên kết có GTLN, GTNN thỏa mãn đk cho trước 125. BÀI 4 – ĐƯỜNG TIỆM CẬN 128. Tóm tắt lý thuyết cơ bản 128. Dạng toán cơ bản 128. + Dạng ➀: Câu hỏi lý thuyết về tiệm cận, không chứa tham số 129. + Dạng ➁: Tiệm cận của đồ thị hàm số không chứa căn thức, không tham số 129. + Dạng ➂: Tiệm cận của đồ thị hàm số chứa căn, không chứa tham số 136. + Dạng ➃: Tiệm cận đồ thị hàm số f(x) dựa vào BBT không tham số 139. + Dạng ➄: Tiệm cận đồ thị hàm số f(x) dựa vào đồ thị không tham số 143. BÀI 5 – KHẢO SÁT HÀM SỐ 144. Tóm tắt lý thuyết cơ bản 144. Dạng toán cơ bản 146. + Dạng ➀: Nhận dạng hàm số – đồ thị 146. + Dạng ➁: Nhận dạng hàm số – BBT 164. + Dạng ➂: Tính chất đồ thị – hàm số – đạo hàm 168. + Dạng ➃: Liên quan giao điểm từ 2 đồ thị không chứa tham số 170. + Dạng ➄: Bài toán đưa về tìm số nghiệm của phương trình f(u) = 0 (không tham số) 177. + Dạng ➅: Ứng dụng KSHS vào giải PT – BPT – BĐT – HỆ không tham số 198. + Dạng ➆: Dạng toán đưa về tìm tham số để PT, BPT, hệ có nghiệm, có k nghiệm khi biết các đồ thị, BBT 203. + Dạng ➇: Tìm tham số để BPT – HỆ nghiệm đúng với mọi x thuộc D 209. + Dạng ➈: Tham số liên quan đến tương giao của các đồ thị thỏa mãn đk về độ dài, góc, diện tích 213. + Dạng ➉: Điểm đặc biệt, tính chất đặc biệt liên quan đồ thị hàm số 218. + Dạng ⓫: Các bài toán liên quan đến phương trình của hàm ẩn 221. CHUYÊN ĐỀ HÀM SỐ LŨY THỪA – HS MŨ – HS LOGARIT 232. BÀI 1 + 2 – LŨY THỪA – HÀM SỐ LŨY THỪA 232. Tóm tắt lý thuyết cơ bản 232. Dạng toán cơ bản 234. + Dạng ➀: Kiểm tra quy tắc biến đổi lũy thừa, tính chất 234. + Dạng ➁: Tính toán, rút gọn các biểu thức chỉ chứa các số cụ thể 234. + Dạng ➂: Tính toán, rút gọn các biểu thức có chứa biến 235. + Dạng ➃: So sánh các lũy thừa 236. + Dạng ➄: Tập xác định của hàm số chứa hàm lũy thừa 237. + Dạng ➅: Đạo hàm hàm số lũy thừa 237. BÀI 3 – LOGARIT 239. Tóm tắt lý thuyết cơ bản 239. Dạng toán cơ bản 240. + Dạng ➀: Câu hỏi lý thuyết, quy tắc biến đổi và tính chất 240. + Dạng ➁: Tính toán liên quan đến logarit dùng đẳng thức 246. + Dạng ➂: So sánh các biểu thức logarit 255. + Dạng ➃: Biểu diễn logrit qua logarit khác 255. BÀI 4 – HÀM SỐ MŨ – HÀM SỐ LOGARIT 257. Tóm tắt lý thuyết cơ bản 257. Dạng toán cơ bản 258. + Dạng ➀: Tập xác định liên quan hàm số mũ, hàm số logarit 258. + Dạng ➁: Đạo hàm liên quan hàm số mũ, hàm số logarit 263. + Dạng ➂: Sự biến thiên có liên quan đến mũ, loga 269. + Dạng ➃: Min – Max liên quan hàm mũ, hàm logarit (1 biến) 270. + Dạng ➄: Đồ thị liên quan hàm số mũ, logarit 271. + Dạng ➅: Bài toán lãi suất 272. + Dạng ➆: Bài toán tăng trưởng 278. + Dạng ➇: Hàm số mũ, logarit chứa tham số 281. + Dạng ➈: Min – Max liên quan hàm mũ, hàm logarit (nhiều biến) 283. BÀI 5 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ 297. Tóm tắt lý thuyết cơ bản 297. Dạng toán cơ bản 298. + Dạng ➀: PT – BPT mũ cơ bản, gần cơ bản 298. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 303. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 305. + Dạng ➃: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 305. + Dạng ➄: Phương pháp hàm số, đánh giá (không tham số) 309. + Dạng ➅: Phương trình mũ có chứa tham số 314. BÀI 6 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LOGARIT 318. Tóm tắt lý thuyết cơ bản 318. Dạng toán cơ bản 318. + Dạng ➀: PT – BPT loga cơ bản, gần cơ bản (không tham số) 318. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 327. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 329. + Dạng ➃: Phương pháp mũ hóa (không tham số) 330. + Dạng ➄: PP phân tích thành nhân tử (không tham số) 330. + Dạng ➅: Phương pháp hàm số, đánh giá (không tham số) 332. + Dạng ➆: Phương trình loga có chứa tham số 342. + Dạng ➇: Bất phương trình loga chứa tham số 347. + Dạng ➈: Hệ có chứa loga 347. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 348. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 351. + Dạng ⓫: Phương trình, bất phương trình tổ hợp cả mũ và loga (có tham số) 352. CHUYÊN ĐỀ NGUYÊN HÀM – TÍCH PHÂN 369. BÀI 1 – NGUYÊN HÀM 369. Tóm tắt lý thuyết cơ bản 369. Dạng toán cơ bản 370. + Dạng ➀: Định nghĩa, tính chất của nguyên hàm 370. + Dạng ➁: Nguyên hàm của hs cơ bản, gần cơ bản 370. + Dạng ➂: PP đổi biến số t = u(x) hàm xác định (ngắn gọn là vi phân) 383. + Dạng ➃: PP nguyên hàm từng phần 385. + Dạng ➄: Nguyên hàm của hs phân thức hữu tỷ 387. + Dạng ➅: Nguyên hàm liên quan đến hàm ẩn 389. + Dạng ➆: Nguyên hàm của hs cho bởi nhiều công thức 392. + Dạng ➇: Tìm nguyên hàm thỏa mãn ĐK cho trước 395. BÀI 2 – TÍCH PHÂN 398. Tóm tắt lý thuyết cơ bản 398. Dạng toán cơ bản 401. + Dạng ➀: Kiểm tra định nghĩa, tính chất của tích phân 401. + Dạng ➁: Tích phân cơ bản (a) kết hợp tính chất (b) 408. + Dạng ➂: PP đổi biến t = u(x) – hàm công thức xđ (ngắn gọn là vi phân) 416. + Dạng ➃: PP tích phân từng phần – hàm xđ 417. + Dạng ➄: Tích phân đặc biệt – hàm xđ 418. + Dạng ➅: Tích phân dựa vào đồ thị 418. + Dạng ➆: Tích phân chứa tham số (chỉ trong kết quả) 421. + Dạng ➇: Tích phân liên quan đến phương trình hàm ẩn 424. BÀI 3 – ỨNG DỤNG TÍCH PHÂN 431. Tóm tắt lý thuyết cơ bản 431. Dạng toán cơ bản 434. + Dạng ➀: Câu hỏi lý thuyết 434. + Dạng ➁: Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định 435. + Dạng ➂: Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định 449. + Dạng ➃: Thể tích tính theo mặt cắt S(x) 451. + Dạng ➄: Bài toán thực tế sử dụng diện tích hình phẳng 452. + Dạng ➅: Ứng dụng vào bài toán chuyển động 454. + Dạng ➆: Ứng dụng tích phân vào đại số (min – max, cực trị, so sánh, đơn điệu) 459. + Dạng ➇: Diện tích khi biết dạng các đồ thị hoặc hàm ẩn 462. CHUYÊN ĐỀ SỐ PHỨC 475. BÀI 1 – ĐỊNH NGHĨA SỐ PHỨC 475. Tóm tắt lý thuyết cơ bản 475. Dạng toán cơ bản 476. + Dạng ➀: Các yếu tố và thuộc tính cơ bản của số phức 476. + Dạng ➁: Hai số phức bằng nhau và ứng dụng hai số phức bằng nhau 480. + Dạng ➂: Các yếu tố và thuộc tính cơ bản của số phức 483. + Dạng ➃: Thực hiện các phép toán cơ bản về số phức 488. + Dạng ➄: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 491. + Dạng ➅: Tìm số phức thỏa mãn đk cho trước 497. + Dạng ➆: Câu hỏi lý thuyết, biểu diễn liên quan đến 1 số phức 505. + Dạng ➇: Biểu diễn số phức qua các phép toán 508. + Dạng ➈: Tập hợp điểm biểu diễn của số phức z độc lập 511. + Dạng ➉: Tìm tâm, bán kính của đường tròn biểu diễn số phức z độc lập 512. BÀI 2 – CÁC PHÉP TOÁN SỐ PHỨC 513. Tóm tắt lý thuyết cơ bản 513. Dạng toán cơ bản 515. + Dạng ➀: Thực hiện các phép toán cơ bản về số phức 515. + Dạng ➁: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 518. + Dạng ➂: Tìm số phức thỏa mãn đk cho trước 524. + Dạng ➃: Sử dụng Module và liên hợp để giải toán số phức 531. + Dạng ➄: Min – Max liên quan đến quỹ tích là đường tròn 537. + Dạng ➅: Min – Max liên quan đến quỹ tích là đường elip 538. + Dạng ➆: Min – Max liên quan đến quỹ tích là đa giác 539. BÀI 3 – PHƯƠNG TRÌNH BẬC HAI 540. Tóm tắt lý thuyết cơ bản 540. + Dạng ➀: Tính toán biểu thức nghiệm 541. + Dạng ➁: Định lí Viet và ứng dụng 549. + Dạng ➂: Phương trình quy về bậc hai, phương trình bậc cao 550. + Dạng ➃: Các bài toán biểu diễn hình học nghiệm của phương trình 550. + Dạng ➄: Các bài toán khác về phương trình 555.

Nguồn: toanmath.com

Đọc Sách

201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết
Nội dung 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết Bản PDF - Nội dung bài viết 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán Tài liệu này bao gồm 202 trang, tập hợp 201 câu hỏi được chọn lọc để ôn thi tốt nghiệp THPT môn Toán, với đáp án và lời giải chi tiết. Các câu hỏi được lấy từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên khắp đất nước. Ví dụ về một câu hỏi trong tài liệu là: "Có bao nhiêu số thực m để đường thẳng y = mx cắt đồ thị hàm số y = x^2 tại ba điểm phân biệt A, B, C, sao cho đường thẳng OA là phân giác của góc BOC?" Đặc điểm của tài liệu này là cung cấp những câu hỏi mang tính chất bám sát đề thi THPT Quốc gia, giúp học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Đồng thời, việc có đáp án và lời giải chi tiết giúp học sinh hiểu rõ về cách giải các dạng bài tập khó, từ đó nâng cao kiến thức và kỹ năng giải toán của mình. Nếu bạn đang chuẩn bị cho kỳ thi tốt nghiệp THPT và đang tìm kiếm tài liệu ôn thi hiệu quả, tài liệu này chắc chắn là một lựa chọn hữu ích dành cho bạn. Hãy cùng tham khảo và ôn tập để chinh phục kỳ thi với thành công!
Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh
Nội dung Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh Bản PDF - Nội dung bài viết Chinh phục vận dụng cao Giải tích Phan Nhật Linh Chinh phục vận dụng cao Giải tích Phan Nhật Linh Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh là một tài liệu giáo khoa có 526 trang được biên soạn bởi thầy giáo Phan Nhật Linh. Tài liệu này tập trung vào việc giải các bài toán vận dụng và vận dụng cao trong Giải tích, với các chủ đề chính là hàm số, mũ và logarit, tích phân, số phức, tổ hợp và xác suất. Được thiết kế đặc biệt cho học sinh lớp 12, tài liệu này giúp học sinh rèn luyện kỹ năng giải bài toán để chinh phục mức điểm cao trong đề thi tốt nghiệp THPT môn Toán, đặc biệt là điểm từ 8 đến 10. Chương 1 của tài liệu tập trung vào hàm số, bao gồm tính đơn điệu, cực trị, giá trị lớn nhất/nhỏ nhất của hàm số, tiệm cận và sự tương giao của đồ thị hàm số. Chương 2 chú trọng vào mũ và logarit, với các bài toán vận dụng phức tạp và cao cấp trong lĩnh vực này. Chương 3 và 4 tập trung vào tích phân và số phức, cung cấp đề vận dụng cao để học sinh có thể áp dụng kiến thức vào bài toán thực tế. Chương 5 đề cập đến tổ hợp và xác suất, mang đến cho học sinh những bài toán vận dụng cao trong lĩnh vực này. Tài liệu Chinh phục vận dụng cao Giải tích Phan Nhật Linh là một công cụ học tập hiệu quả giúp học sinh nắm vững kiến thức và kỹ năng giải bài toán trong môn Toán, đồng thời nâng cao khả năng chuẩn bị cho kỳ thi tốt nghiệp THPT.
Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)
Nội dung Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Bản PDF - Nội dung bài viết Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)PHẦN 1: GIẢI TÍCH Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Tài liệu này được biên soạn bởi thầy giáo Trần Thanh Hiếu, gồm 290 trang, tập hợp các chuyên đề luyện thi TN THPT 2022 môn Toán. Nội dung chi tiết được chia thành các phần như sau: PHẦN 1: GIẢI TÍCH Chương 1: Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số Bài 1: Sự đồng biến – nghịch biến của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm khoảng đơn điệu của hàm số 2. Tìm m để hàm số đồng biến – nghịch biến C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 2: Cực trị của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm cực trị của hàm số 2. Biện luận cực trị của hàm số C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 3: Giá trị lớn nhất – giá trị nhỏ nhất ... Hơn nữa, tài liệu còn đi sâu vào các phần khác như Hình học với chương trình rõ ràng, chi tiết và dễ hiểu giúp học sinh nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Tóm lại, Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) là công cụ hữu ích để học sinh tự ôn tập, rèn luyện kỹ năng giải bài tập, củng cố kiến thức và chuẩn bị tốt cho kỳ thi quan trọng.
Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu
Nội dung Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Bản PDF - Nội dung bài viết Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Tài liệu này gồm tổng cộng 33 trang, được soạn bởi thầy giáo Nguyễn Viết Hiếu. Được biên soạn nhằm mục đích tổng hợp công thức Toán THPT cho cả ba khối lớp 10, 11 và 12. Được thiết kế để giúp học sinh có thể dễ dàng tra cứu và áp dụng trong quá trình học và ôn thi tốt nghiệp THPT môn Toán. Dưới đây là một số chủ đề chính được nhấn mạnh trong tài liệu: Hàm số: Bao gồm các công thức và tính chất về hàm số. Hàm số mũ, hàm số lũy thừa, hàm số logarithm: Giúp học sinh hiểu rõ về các loại hàm số này. Nguyên hàm, tích phân, ứng dụng: Cung cấp kiến thức cơ bản về nguyên hàm và tích phân, cũng như ứng dụng của chúng trong thực tế. Số phức: Một chủ đề quan trọng trong Toán THPT. Thể tích khối đa diện, khối tròn xoay: Thực hành tính toán và giải bài tập liên quan đến các loại hình học đặc biệt. Không gian OXYZ, phép biến hình: Giúp học sinh hiểu rõ các khái niệm và tính chất của không gian và phép biến hình. Hình học không gian, đại số tổ hợp: Là những chủ đề chính trong tài liệu giúp nắm vững kiến thức cơ bản. Cấp số cộng, cấp số nhân, giới hạn, đạo hàm: Các công thức và phương pháp tính toán quan trọng trong Toán THPT. Tập hợp, hàm số, phương trình, biến phụ thuộc, thống kê, lượng giác: Cung cấp kiến thức đa dạng và phong phú. Vector, các phép toán vector, tích vô hướng: Những kiến thức hữu ích về vector và các phép toán liên quan. Hình Oxy: Thể hiện các tính chất và đặc điểm của hình học trên mặt phẳng Oxy. Tài liệu này sẽ là nguồn tư liệu hữu ích và đáng tin cậy để học sinh tự học và ôn thi Toán THPT một cách hiệu quả.