Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Giải tích

Tài liệu gồm 559 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM 3. BÀI 1 – SỰ BIẾN THIÊN CỦA HÀM SỐ 3. Tóm tắt lý thuyết cơ bản 3. Dạng toán cơ bản 3. + Dạng ➀: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 3. + Dạng ➁: Tính đơn điệu của f(x), g(u) biết các đồ thị không tham số 8. + Dạng ➂: Tính đơn điệu của f(x), g(u) biết các BBT, BXD 11. + Dạng ➃: Tính đơn điệu f(x), g(u) liên quan biểu thức đạo hàm 24. + Dạng ➄: Tính đơn điệu của hàm liến kết h(x) = f(u) + g(x) biết các BBT, BXD 25. + Dạng ➅: Tính đơn điệu của hàm g(x) khi biết đồ thị, BBT của f(u) 29. + Dạng ➆: Tìm tham số để hàm bậc nhất trên bậc nhất đơn điệu 30. + Dạng ➇: Tính đơn điệu của hs chứa dấu GTTĐ có tham số biết đồ thị, BBT 38. BÀI 2 – CỰC TRỊ CỦA HÀM SỐ 40. Tóm tắt lý thuyết cơ bản 40. Dạng toán cơ bản 41. + Dạng ➀: Cực trị của một hàm số cho bởi một công thức và các câu hỏi liên quan 41. + Dạng ➁: Cực trị f(x), f(u) biết các đồ thị không tham số 43. + Dạng ➂: Cực trị f(x), f(u) biết các BBT, BXD không tham số 51. + Dạng ➃: Cực trị f(x), f(u) liên quan biểu thức đạo hàm không tham số 69. + Dạng ➄: Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức khi biết đồ thị, BBT 78. + Dạng ➅: Tìm tham số để f(x) đạt cực trị tại 1 điểm x0 cho trước 84. + Dạng ➆: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 3 thỏa mãn ĐK 87. + Dạng ➇: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 4 trùng phương thỏa mãn ĐK (không GTTĐ) 92. + Dạng ➈: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 94. + Dạng ➉: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 95. BÀI 3 – GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT 103. Tóm tắt lý thuyết cơ bản 103. Dạng toán cơ bản 103. + Dạng ➀: GTLN, GTNN của f(x) trên đoạn biết biểu thức f(x) 104. + Dạng ➁: GTLN, GTNN của f(x) trên khoảng biết biểu thức f(x) 115. + Dạng ➂: GTLN, GTNN của hàm số g(x) biết các BBT, đồ thị 116. + Dạng ➃: Bài toán ứng dụng, tối ưu, thực tế 118. + Dạng ➄: GTLN, GTNN liên quan hàm số hợp g(f(x)), f(u(x)) khi biết các đồ thị, BBT 121. + Dạng ➅: Tìm m để hs f(x) có GTLN, GTNN thỏa mãn đk cho trước 123. + Dạng ➆: Tìm tham số để hs chứa dấu GTTĐ, hàm hợp, hàm liên kết có GTLN, GTNN thỏa mãn đk cho trước 125. BÀI 4 – ĐƯỜNG TIỆM CẬN 128. Tóm tắt lý thuyết cơ bản 128. Dạng toán cơ bản 128. + Dạng ➀: Câu hỏi lý thuyết về tiệm cận, không chứa tham số 129. + Dạng ➁: Tiệm cận của đồ thị hàm số không chứa căn thức, không tham số 129. + Dạng ➂: Tiệm cận của đồ thị hàm số chứa căn, không chứa tham số 136. + Dạng ➃: Tiệm cận đồ thị hàm số f(x) dựa vào BBT không tham số 139. + Dạng ➄: Tiệm cận đồ thị hàm số f(x) dựa vào đồ thị không tham số 143. BÀI 5 – KHẢO SÁT HÀM SỐ 144. Tóm tắt lý thuyết cơ bản 144. Dạng toán cơ bản 146. + Dạng ➀: Nhận dạng hàm số – đồ thị 146. + Dạng ➁: Nhận dạng hàm số – BBT 164. + Dạng ➂: Tính chất đồ thị – hàm số – đạo hàm 168. + Dạng ➃: Liên quan giao điểm từ 2 đồ thị không chứa tham số 170. + Dạng ➄: Bài toán đưa về tìm số nghiệm của phương trình f(u) = 0 (không tham số) 177. + Dạng ➅: Ứng dụng KSHS vào giải PT – BPT – BĐT – HỆ không tham số 198. + Dạng ➆: Dạng toán đưa về tìm tham số để PT, BPT, hệ có nghiệm, có k nghiệm khi biết các đồ thị, BBT 203. + Dạng ➇: Tìm tham số để BPT – HỆ nghiệm đúng với mọi x thuộc D 209. + Dạng ➈: Tham số liên quan đến tương giao của các đồ thị thỏa mãn đk về độ dài, góc, diện tích 213. + Dạng ➉: Điểm đặc biệt, tính chất đặc biệt liên quan đồ thị hàm số 218. + Dạng ⓫: Các bài toán liên quan đến phương trình của hàm ẩn 221. CHUYÊN ĐỀ HÀM SỐ LŨY THỪA – HS MŨ – HS LOGARIT 232. BÀI 1 + 2 – LŨY THỪA – HÀM SỐ LŨY THỪA 232. Tóm tắt lý thuyết cơ bản 232. Dạng toán cơ bản 234. + Dạng ➀: Kiểm tra quy tắc biến đổi lũy thừa, tính chất 234. + Dạng ➁: Tính toán, rút gọn các biểu thức chỉ chứa các số cụ thể 234. + Dạng ➂: Tính toán, rút gọn các biểu thức có chứa biến 235. + Dạng ➃: So sánh các lũy thừa 236. + Dạng ➄: Tập xác định của hàm số chứa hàm lũy thừa 237. + Dạng ➅: Đạo hàm hàm số lũy thừa 237. BÀI 3 – LOGARIT 239. Tóm tắt lý thuyết cơ bản 239. Dạng toán cơ bản 240. + Dạng ➀: Câu hỏi lý thuyết, quy tắc biến đổi và tính chất 240. + Dạng ➁: Tính toán liên quan đến logarit dùng đẳng thức 246. + Dạng ➂: So sánh các biểu thức logarit 255. + Dạng ➃: Biểu diễn logrit qua logarit khác 255. BÀI 4 – HÀM SỐ MŨ – HÀM SỐ LOGARIT 257. Tóm tắt lý thuyết cơ bản 257. Dạng toán cơ bản 258. + Dạng ➀: Tập xác định liên quan hàm số mũ, hàm số logarit 258. + Dạng ➁: Đạo hàm liên quan hàm số mũ, hàm số logarit 263. + Dạng ➂: Sự biến thiên có liên quan đến mũ, loga 269. + Dạng ➃: Min – Max liên quan hàm mũ, hàm logarit (1 biến) 270. + Dạng ➄: Đồ thị liên quan hàm số mũ, logarit 271. + Dạng ➅: Bài toán lãi suất 272. + Dạng ➆: Bài toán tăng trưởng 278. + Dạng ➇: Hàm số mũ, logarit chứa tham số 281. + Dạng ➈: Min – Max liên quan hàm mũ, hàm logarit (nhiều biến) 283. BÀI 5 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ 297. Tóm tắt lý thuyết cơ bản 297. Dạng toán cơ bản 298. + Dạng ➀: PT – BPT mũ cơ bản, gần cơ bản 298. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 303. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 305. + Dạng ➃: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 305. + Dạng ➄: Phương pháp hàm số, đánh giá (không tham số) 309. + Dạng ➅: Phương trình mũ có chứa tham số 314. BÀI 6 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LOGARIT 318. Tóm tắt lý thuyết cơ bản 318. Dạng toán cơ bản 318. + Dạng ➀: PT – BPT loga cơ bản, gần cơ bản (không tham số) 318. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 327. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 329. + Dạng ➃: Phương pháp mũ hóa (không tham số) 330. + Dạng ➄: PP phân tích thành nhân tử (không tham số) 330. + Dạng ➅: Phương pháp hàm số, đánh giá (không tham số) 332. + Dạng ➆: Phương trình loga có chứa tham số 342. + Dạng ➇: Bất phương trình loga chứa tham số 347. + Dạng ➈: Hệ có chứa loga 347. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 348. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 351. + Dạng ⓫: Phương trình, bất phương trình tổ hợp cả mũ và loga (có tham số) 352. CHUYÊN ĐỀ NGUYÊN HÀM – TÍCH PHÂN 369. BÀI 1 – NGUYÊN HÀM 369. Tóm tắt lý thuyết cơ bản 369. Dạng toán cơ bản 370. + Dạng ➀: Định nghĩa, tính chất của nguyên hàm 370. + Dạng ➁: Nguyên hàm của hs cơ bản, gần cơ bản 370. + Dạng ➂: PP đổi biến số t = u(x) hàm xác định (ngắn gọn là vi phân) 383. + Dạng ➃: PP nguyên hàm từng phần 385. + Dạng ➄: Nguyên hàm của hs phân thức hữu tỷ 387. + Dạng ➅: Nguyên hàm liên quan đến hàm ẩn 389. + Dạng ➆: Nguyên hàm của hs cho bởi nhiều công thức 392. + Dạng ➇: Tìm nguyên hàm thỏa mãn ĐK cho trước 395. BÀI 2 – TÍCH PHÂN 398. Tóm tắt lý thuyết cơ bản 398. Dạng toán cơ bản 401. + Dạng ➀: Kiểm tra định nghĩa, tính chất của tích phân 401. + Dạng ➁: Tích phân cơ bản (a) kết hợp tính chất (b) 408. + Dạng ➂: PP đổi biến t = u(x) – hàm công thức xđ (ngắn gọn là vi phân) 416. + Dạng ➃: PP tích phân từng phần – hàm xđ 417. + Dạng ➄: Tích phân đặc biệt – hàm xđ 418. + Dạng ➅: Tích phân dựa vào đồ thị 418. + Dạng ➆: Tích phân chứa tham số (chỉ trong kết quả) 421. + Dạng ➇: Tích phân liên quan đến phương trình hàm ẩn 424. BÀI 3 – ỨNG DỤNG TÍCH PHÂN 431. Tóm tắt lý thuyết cơ bản 431. Dạng toán cơ bản 434. + Dạng ➀: Câu hỏi lý thuyết 434. + Dạng ➁: Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định 435. + Dạng ➂: Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định 449. + Dạng ➃: Thể tích tính theo mặt cắt S(x) 451. + Dạng ➄: Bài toán thực tế sử dụng diện tích hình phẳng 452. + Dạng ➅: Ứng dụng vào bài toán chuyển động 454. + Dạng ➆: Ứng dụng tích phân vào đại số (min – max, cực trị, so sánh, đơn điệu) 459. + Dạng ➇: Diện tích khi biết dạng các đồ thị hoặc hàm ẩn 462. CHUYÊN ĐỀ SỐ PHỨC 475. BÀI 1 – ĐỊNH NGHĨA SỐ PHỨC 475. Tóm tắt lý thuyết cơ bản 475. Dạng toán cơ bản 476. + Dạng ➀: Các yếu tố và thuộc tính cơ bản của số phức 476. + Dạng ➁: Hai số phức bằng nhau và ứng dụng hai số phức bằng nhau 480. + Dạng ➂: Các yếu tố và thuộc tính cơ bản của số phức 483. + Dạng ➃: Thực hiện các phép toán cơ bản về số phức 488. + Dạng ➄: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 491. + Dạng ➅: Tìm số phức thỏa mãn đk cho trước 497. + Dạng ➆: Câu hỏi lý thuyết, biểu diễn liên quan đến 1 số phức 505. + Dạng ➇: Biểu diễn số phức qua các phép toán 508. + Dạng ➈: Tập hợp điểm biểu diễn của số phức z độc lập 511. + Dạng ➉: Tìm tâm, bán kính của đường tròn biểu diễn số phức z độc lập 512. BÀI 2 – CÁC PHÉP TOÁN SỐ PHỨC 513. Tóm tắt lý thuyết cơ bản 513. Dạng toán cơ bản 515. + Dạng ➀: Thực hiện các phép toán cơ bản về số phức 515. + Dạng ➁: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 518. + Dạng ➂: Tìm số phức thỏa mãn đk cho trước 524. + Dạng ➃: Sử dụng Module và liên hợp để giải toán số phức 531. + Dạng ➄: Min – Max liên quan đến quỹ tích là đường tròn 537. + Dạng ➅: Min – Max liên quan đến quỹ tích là đường elip 538. + Dạng ➆: Min – Max liên quan đến quỹ tích là đa giác 539. BÀI 3 – PHƯƠNG TRÌNH BẬC HAI 540. Tóm tắt lý thuyết cơ bản 540. + Dạng ➀: Tính toán biểu thức nghiệm 541. + Dạng ➁: Định lí Viet và ứng dụng 549. + Dạng ➂: Phương trình quy về bậc hai, phương trình bậc cao 550. + Dạng ➃: Các bài toán biểu diễn hình học nghiệm của phương trình 550. + Dạng ➄: Các bài toán khác về phương trình 555.

Nguồn: toanmath.com

Đọc Sách

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán
Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.
Tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán
Chỉ còn một tháng nữa, kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức sẽ chính thức được diễn ra, đây là quãng thời gian các em học sinh cần tập trung ôn tập nhằm củng cố và nâng cao kiến thức Toán, kỹ năng giải toán trắc nghiệm, thử sức với nhiều dạng toán khác nhau, nhất là các dạng toán vận dụng cao, nhằm chinh phục mức điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia 2019 môn Toán sắp tới. Đồng hành cùng các em trong kỳ thi sắp tới, chia sẻ đến các em tài liệu tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán. Tài liệu gồm 238 trang được tổng hợp bởi thầy Nguyễn Bảo Vương, tuyển chọn các bài toán hay và khó, với đầy đủ các chủ đề theo cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và sở GD&ĐT trên cả nước, 100% bài toán có đáp án và lời giải chi tiết. [ads] Khái quát nội dung tài liệu tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán: + Chuyên đề 1. Hàm số và các vấn đề liên quan (trang 1 – trang 86). + Chuyên đề 2. Hàm số mũ – logarit (trang 87 – trang 111). + Chuyên đề 3. Nguyên hàm – tích phân và ứng dụng (trang 112 – trang 131). + Chuyên đề 4. Số phức (trang 132 – trang 150). + Chuyên đề 5. Khối đa diện và thể tích khối đa diện (trang 151 – trang 180). + Chuyên đề 6. Khối tròn xoay (trang 181 – trang 187). + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz (trang 188 – trang 217). + Chuyên đề 8. Một số bài toán khó lớp 11 (trang 218 – trang 238).
Phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019
Tài liệu gồm 54 trang hướng dẫn giải, phân tích, bình luận, phát triển các câu hỏi và bài toán vận dụng cao (từ câu 39 đến câu 50) trong đề tham khảo môn Toán kỳ thi THPT Quốc gia năm 2019, tài liệu được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Toán VD – VDC. Trích dẫn lời mở đầu tài liệu phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019: Làm toán không vội vàng được, phải làm từ từ để hiểu hết được bản chất của nó và ý nghĩa của nó trong thực tiễn. Đã đến lúc phải trả lại danh hiệu cho em nó “Toán học là nữ hoàng của mọi bộ môn khoa học”. Kỳ thi THPT Quốc gia từ năm 2016 – 2018, bài thi môn Toán chuyển từ thi tự luận sang hình thức thi trắc nghiệm nên trong cách dạy, cách kiểm tra đánh giá, cách ra đề cũng thay đổi. Sự thay đổi đó nằm trong toàn bộ chương trình môn Toán nói chung và trong kỹ năng giải toán nói riêng. Bước sang kỳ thi THPT Quốc gia năm 2018 – 2019 đánh giá sự đổi mới toàn bộ trong nội dung ra đề của Bộ Giáo Dục với mục tiêu chính là hạn chế “Casio hóa”, tăng cường các câu hỏi Vận dụng và Vận dụng cao nhằm phân hóa được học sinh ở các ngưỡng trung bình – khá – giỏi. Với mong muốn đưa ra những nhận định, những phân tích cho đề Tham Khảo 2019 vừa được BGD công bố, để giúp học sinh tiếp cận gần hơn với những bài toán khó đó, tập thể những thầy cô chúng tôi sau rất nhiều tâm huyết xin được trân trọng giới thiệu đến bạn đọc “Phân tích, bình luận và phát triển đề Tham Khảo 2019 môn Toán”.
Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3)
Tiếp tục series đề ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán hướng đến kỳ thi THPT Quốc gia năm 2019, giới thiệu đến bạn đọc đề thi số 3, loạt đề do các tác giả nhóm Chinh Phục Olympic Toán tổng hợp và biên soạn, đây là các bài toán thuộc mức độ khó và rất khó được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT, sở GD&ĐT. Đề gồm 42 trang với 60 bài toán trắc nghiệm, có phân tích và lời giải chi tiết. Trích dẫn đề ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) : + Cho (C) là đồ thị của hàm số y=x^3 + 3mx + 1(với m < 0 là tham số thực). Gọi M là đường thẳng đi qua hai điểm cực trị của (C). Đường thẳng d cắt đường tròn tâm I(-1;0) bán kính R = 3 tại hai điểm phân biệt A, B. Gọi S là tập hợp tất cả các giá trị của m sao cho diện tích tam giác IAB đạt giá trị lớn nhất. Hỏi S có tất cả bao nhiêu phần tử? [ads] + Cho tập A = {0,1,2,3,4,5,6,7,8,9}. Gọi S là tập hợp tất cả các số có 5 năm chữ số phân biệt được lập từ A. Chọn ngẫu nhiên một số từ S. Khi đó xác suất để chọn được số có dạng a1a2a3a4a5, sao cho a1 < a2 < a3 và a3 > a4 > a5 là? + Xét các hình chóp S.ABCD thỏa mãn điều kiện: đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a. Biết rằng thể tích khối chóp S.ABCD đạt giá trị nhỏ nhất V, khi cosin góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng √p/q, trong đó p, q là các số nguyên dương và phân số p/q là tối giản. Tính T = (p + q)V0.