Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Giải tích

Tài liệu gồm 559 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM 3. BÀI 1 – SỰ BIẾN THIÊN CỦA HÀM SỐ 3. Tóm tắt lý thuyết cơ bản 3. Dạng toán cơ bản 3. + Dạng ➀: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 3. + Dạng ➁: Tính đơn điệu của f(x), g(u) biết các đồ thị không tham số 8. + Dạng ➂: Tính đơn điệu của f(x), g(u) biết các BBT, BXD 11. + Dạng ➃: Tính đơn điệu f(x), g(u) liên quan biểu thức đạo hàm 24. + Dạng ➄: Tính đơn điệu của hàm liến kết h(x) = f(u) + g(x) biết các BBT, BXD 25. + Dạng ➅: Tính đơn điệu của hàm g(x) khi biết đồ thị, BBT của f(u) 29. + Dạng ➆: Tìm tham số để hàm bậc nhất trên bậc nhất đơn điệu 30. + Dạng ➇: Tính đơn điệu của hs chứa dấu GTTĐ có tham số biết đồ thị, BBT 38. BÀI 2 – CỰC TRỊ CỦA HÀM SỐ 40. Tóm tắt lý thuyết cơ bản 40. Dạng toán cơ bản 41. + Dạng ➀: Cực trị của một hàm số cho bởi một công thức và các câu hỏi liên quan 41. + Dạng ➁: Cực trị f(x), f(u) biết các đồ thị không tham số 43. + Dạng ➂: Cực trị f(x), f(u) biết các BBT, BXD không tham số 51. + Dạng ➃: Cực trị f(x), f(u) liên quan biểu thức đạo hàm không tham số 69. + Dạng ➄: Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức khi biết đồ thị, BBT 78. + Dạng ➅: Tìm tham số để f(x) đạt cực trị tại 1 điểm x0 cho trước 84. + Dạng ➆: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 3 thỏa mãn ĐK 87. + Dạng ➇: Tìm tham số liên quan đến cực trị của hàm đa thức bậc 4 trùng phương thỏa mãn ĐK (không GTTĐ) 92. + Dạng ➈: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 94. + Dạng ➉: Cực trị hàm hợp f(u), g(f(x)), hàm liên kết có tham số 95. BÀI 3 – GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT 103. Tóm tắt lý thuyết cơ bản 103. Dạng toán cơ bản 103. + Dạng ➀: GTLN, GTNN của f(x) trên đoạn biết biểu thức f(x) 104. + Dạng ➁: GTLN, GTNN của f(x) trên khoảng biết biểu thức f(x) 115. + Dạng ➂: GTLN, GTNN của hàm số g(x) biết các BBT, đồ thị 116. + Dạng ➃: Bài toán ứng dụng, tối ưu, thực tế 118. + Dạng ➄: GTLN, GTNN liên quan hàm số hợp g(f(x)), f(u(x)) khi biết các đồ thị, BBT 121. + Dạng ➅: Tìm m để hs f(x) có GTLN, GTNN thỏa mãn đk cho trước 123. + Dạng ➆: Tìm tham số để hs chứa dấu GTTĐ, hàm hợp, hàm liên kết có GTLN, GTNN thỏa mãn đk cho trước 125. BÀI 4 – ĐƯỜNG TIỆM CẬN 128. Tóm tắt lý thuyết cơ bản 128. Dạng toán cơ bản 128. + Dạng ➀: Câu hỏi lý thuyết về tiệm cận, không chứa tham số 129. + Dạng ➁: Tiệm cận của đồ thị hàm số không chứa căn thức, không tham số 129. + Dạng ➂: Tiệm cận của đồ thị hàm số chứa căn, không chứa tham số 136. + Dạng ➃: Tiệm cận đồ thị hàm số f(x) dựa vào BBT không tham số 139. + Dạng ➄: Tiệm cận đồ thị hàm số f(x) dựa vào đồ thị không tham số 143. BÀI 5 – KHẢO SÁT HÀM SỐ 144. Tóm tắt lý thuyết cơ bản 144. Dạng toán cơ bản 146. + Dạng ➀: Nhận dạng hàm số – đồ thị 146. + Dạng ➁: Nhận dạng hàm số – BBT 164. + Dạng ➂: Tính chất đồ thị – hàm số – đạo hàm 168. + Dạng ➃: Liên quan giao điểm từ 2 đồ thị không chứa tham số 170. + Dạng ➄: Bài toán đưa về tìm số nghiệm của phương trình f(u) = 0 (không tham số) 177. + Dạng ➅: Ứng dụng KSHS vào giải PT – BPT – BĐT – HỆ không tham số 198. + Dạng ➆: Dạng toán đưa về tìm tham số để PT, BPT, hệ có nghiệm, có k nghiệm khi biết các đồ thị, BBT 203. + Dạng ➇: Tìm tham số để BPT – HỆ nghiệm đúng với mọi x thuộc D 209. + Dạng ➈: Tham số liên quan đến tương giao của các đồ thị thỏa mãn đk về độ dài, góc, diện tích 213. + Dạng ➉: Điểm đặc biệt, tính chất đặc biệt liên quan đồ thị hàm số 218. + Dạng ⓫: Các bài toán liên quan đến phương trình của hàm ẩn 221. CHUYÊN ĐỀ HÀM SỐ LŨY THỪA – HS MŨ – HS LOGARIT 232. BÀI 1 + 2 – LŨY THỪA – HÀM SỐ LŨY THỪA 232. Tóm tắt lý thuyết cơ bản 232. Dạng toán cơ bản 234. + Dạng ➀: Kiểm tra quy tắc biến đổi lũy thừa, tính chất 234. + Dạng ➁: Tính toán, rút gọn các biểu thức chỉ chứa các số cụ thể 234. + Dạng ➂: Tính toán, rút gọn các biểu thức có chứa biến 235. + Dạng ➃: So sánh các lũy thừa 236. + Dạng ➄: Tập xác định của hàm số chứa hàm lũy thừa 237. + Dạng ➅: Đạo hàm hàm số lũy thừa 237. BÀI 3 – LOGARIT 239. Tóm tắt lý thuyết cơ bản 239. Dạng toán cơ bản 240. + Dạng ➀: Câu hỏi lý thuyết, quy tắc biến đổi và tính chất 240. + Dạng ➁: Tính toán liên quan đến logarit dùng đẳng thức 246. + Dạng ➂: So sánh các biểu thức logarit 255. + Dạng ➃: Biểu diễn logrit qua logarit khác 255. BÀI 4 – HÀM SỐ MŨ – HÀM SỐ LOGARIT 257. Tóm tắt lý thuyết cơ bản 257. Dạng toán cơ bản 258. + Dạng ➀: Tập xác định liên quan hàm số mũ, hàm số logarit 258. + Dạng ➁: Đạo hàm liên quan hàm số mũ, hàm số logarit 263. + Dạng ➂: Sự biến thiên có liên quan đến mũ, loga 269. + Dạng ➃: Min – Max liên quan hàm mũ, hàm logarit (1 biến) 270. + Dạng ➄: Đồ thị liên quan hàm số mũ, logarit 271. + Dạng ➅: Bài toán lãi suất 272. + Dạng ➆: Bài toán tăng trưởng 278. + Dạng ➇: Hàm số mũ, logarit chứa tham số 281. + Dạng ➈: Min – Max liên quan hàm mũ, hàm logarit (nhiều biến) 283. BÀI 5 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ 297. Tóm tắt lý thuyết cơ bản 297. Dạng toán cơ bản 298. + Dạng ➀: PT – BPT mũ cơ bản, gần cơ bản 298. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 303. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 305. + Dạng ➃: Tính đơn điệu của f(x), g(u) biết công thức f(x) không GTTĐ 305. + Dạng ➄: Phương pháp hàm số, đánh giá (không tham số) 309. + Dạng ➅: Phương trình mũ có chứa tham số 314. BÀI 6 – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LOGARIT 318. Tóm tắt lý thuyết cơ bản 318. Dạng toán cơ bản 318. + Dạng ➀: PT – BPT loga cơ bản, gần cơ bản (không tham số) 318. + Dạng ➁: Phương pháp đưa về cùng cơ số (không tham số) 327. + Dạng ➂: Phương pháp đặt ẩn phụ (không tham số) 329. + Dạng ➃: Phương pháp mũ hóa (không tham số) 330. + Dạng ➄: PP phân tích thành nhân tử (không tham số) 330. + Dạng ➅: Phương pháp hàm số, đánh giá (không tham số) 332. + Dạng ➆: Phương trình loga có chứa tham số 342. + Dạng ➇: Bất phương trình loga chứa tham số 347. + Dạng ➈: Hệ có chứa loga 347. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 348. + Dạng ➉: Phương trình, bất phương trình tổ hợp cả mũ và loga (không tham số) 351. + Dạng ⓫: Phương trình, bất phương trình tổ hợp cả mũ và loga (có tham số) 352. CHUYÊN ĐỀ NGUYÊN HÀM – TÍCH PHÂN 369. BÀI 1 – NGUYÊN HÀM 369. Tóm tắt lý thuyết cơ bản 369. Dạng toán cơ bản 370. + Dạng ➀: Định nghĩa, tính chất của nguyên hàm 370. + Dạng ➁: Nguyên hàm của hs cơ bản, gần cơ bản 370. + Dạng ➂: PP đổi biến số t = u(x) hàm xác định (ngắn gọn là vi phân) 383. + Dạng ➃: PP nguyên hàm từng phần 385. + Dạng ➄: Nguyên hàm của hs phân thức hữu tỷ 387. + Dạng ➅: Nguyên hàm liên quan đến hàm ẩn 389. + Dạng ➆: Nguyên hàm của hs cho bởi nhiều công thức 392. + Dạng ➇: Tìm nguyên hàm thỏa mãn ĐK cho trước 395. BÀI 2 – TÍCH PHÂN 398. Tóm tắt lý thuyết cơ bản 398. Dạng toán cơ bản 401. + Dạng ➀: Kiểm tra định nghĩa, tính chất của tích phân 401. + Dạng ➁: Tích phân cơ bản (a) kết hợp tính chất (b) 408. + Dạng ➂: PP đổi biến t = u(x) – hàm công thức xđ (ngắn gọn là vi phân) 416. + Dạng ➃: PP tích phân từng phần – hàm xđ 417. + Dạng ➄: Tích phân đặc biệt – hàm xđ 418. + Dạng ➅: Tích phân dựa vào đồ thị 418. + Dạng ➆: Tích phân chứa tham số (chỉ trong kết quả) 421. + Dạng ➇: Tích phân liên quan đến phương trình hàm ẩn 424. BÀI 3 – ỨNG DỤNG TÍCH PHÂN 431. Tóm tắt lý thuyết cơ bản 431. Dạng toán cơ bản 434. + Dạng ➀: Câu hỏi lý thuyết 434. + Dạng ➁: Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định 435. + Dạng ➂: Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định 449. + Dạng ➃: Thể tích tính theo mặt cắt S(x) 451. + Dạng ➄: Bài toán thực tế sử dụng diện tích hình phẳng 452. + Dạng ➅: Ứng dụng vào bài toán chuyển động 454. + Dạng ➆: Ứng dụng tích phân vào đại số (min – max, cực trị, so sánh, đơn điệu) 459. + Dạng ➇: Diện tích khi biết dạng các đồ thị hoặc hàm ẩn 462. CHUYÊN ĐỀ SỐ PHỨC 475. BÀI 1 – ĐỊNH NGHĨA SỐ PHỨC 475. Tóm tắt lý thuyết cơ bản 475. Dạng toán cơ bản 476. + Dạng ➀: Các yếu tố và thuộc tính cơ bản của số phức 476. + Dạng ➁: Hai số phức bằng nhau và ứng dụng hai số phức bằng nhau 480. + Dạng ➂: Các yếu tố và thuộc tính cơ bản của số phức 483. + Dạng ➃: Thực hiện các phép toán cơ bản về số phức 488. + Dạng ➄: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 491. + Dạng ➅: Tìm số phức thỏa mãn đk cho trước 497. + Dạng ➆: Câu hỏi lý thuyết, biểu diễn liên quan đến 1 số phức 505. + Dạng ➇: Biểu diễn số phức qua các phép toán 508. + Dạng ➈: Tập hợp điểm biểu diễn của số phức z độc lập 511. + Dạng ➉: Tìm tâm, bán kính của đường tròn biểu diễn số phức z độc lập 512. BÀI 2 – CÁC PHÉP TOÁN SỐ PHỨC 513. Tóm tắt lý thuyết cơ bản 513. Dạng toán cơ bản 515. + Dạng ➀: Thực hiện các phép toán cơ bản về số phức 515. + Dạng ➁: Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán 518. + Dạng ➂: Tìm số phức thỏa mãn đk cho trước 524. + Dạng ➃: Sử dụng Module và liên hợp để giải toán số phức 531. + Dạng ➄: Min – Max liên quan đến quỹ tích là đường tròn 537. + Dạng ➅: Min – Max liên quan đến quỹ tích là đường elip 538. + Dạng ➆: Min – Max liên quan đến quỹ tích là đa giác 539. BÀI 3 – PHƯƠNG TRÌNH BẬC HAI 540. Tóm tắt lý thuyết cơ bản 540. + Dạng ➀: Tính toán biểu thức nghiệm 541. + Dạng ➁: Định lí Viet và ứng dụng 549. + Dạng ➂: Phương trình quy về bậc hai, phương trình bậc cao 550. + Dạng ➃: Các bài toán biểu diễn hình học nghiệm của phương trình 550. + Dạng ➄: Các bài toán khác về phương trình 555.

Nguồn: toanmath.com

Đọc Sách

Tư duy giải nhanh các câu hỏi khó trong đề chính thức THPTQG 2018 môn Toán
Tài liệu gồm 6 trang hướng dẫn tư duy giải nhanh các câu hỏi khó trong đề chính thức THPTQG 2018 môn Toán, trong đó bao gồm 16 câu hỏi, từ câu 35 đến câu 50 thuộc mã đề 101, trong 16 câu hỏi này có 1 câu hỏi vận dụng thấp và 15 câu hỏi vận dụng cao. Lời giải được trình bày ngắn gọn, mỗi câu không quá 3 bước tính toán. Thông qua lời giải này, chúng ta có thể nhận thấy “ý đồ” ra đề của Bộ GD&ĐT nhằm kiểm tra quá trình tư duy toán học của học sinh, điều này có lợi cho các học sinh nắm kiến thức sâu sắc và có tư duy tốt, nhưng lại gây khó khăn cho các học sinh học theo hình thức thuộc bài và thiên về tính toán.
Tổng ôn toán vận dụng - vận dụng cao ôn thi THPTQG môn Toán - Lục Trí Tuyên
Tài liệu gồm 60 trang được biên soạn bởi thầy Lục Trí Tuyên tuyển tập 142 bài toán trắc nghiệm mức độ vận dụng và vận dụng cao ôn thi THPT Quốc gia môn Toán, trong đó gồm 35 bài toán thuộc chương trình Toán 11 và 107 bài toán nằm trong chương trình Toán 12, các bài toán đều có đáp án, được phân tích và giải chi tiết.
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 2 Hình học)
Tài liệu gồm 95 trang trình bày lý thuyết cần nhớ, phân dạng toán có hướng dẫn giải và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Hình học ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp, nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu : + Chuyên đề 5. Khối đa diện – Thể tích khối đa diện + Chuyên đề 6. Mặt nón – Mặt trụ và Mặt cầu + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz [ads] Xem thêm : + Chuyên đề Toán 12 ôn thi THPTQG – Lư Sĩ Pháp (Tập 1: Giải tích) + Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)
Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp