Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Lê Hồng Phong - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 05 năm 2022. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định : + Từ 2022 số nguyên dương đầu tiên là 1; 2; 3; …; 2022, người ta chọn ra n số phân biệt sao cho cứ hai số bất kì được chọn ra đều có hiệu không là ước của tổng hai số đó. Chứng minh rằng n ≤ 674. + Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA và MB với đường tròn (O) (A và B là các tiếp điểm). Gọi D là điểm trên cung lớn AB của đường tròn (O;R) sao cho AD // MB và C là giao điểm thứ hai của đường thẳng MD với đường tròn (O;R). 1. Gọi H là giao điểm của các đường thẳng OM và AB. Chứng minh rằng MH.MO = MC.MD và tứ giác OHCD nội tiếp. 2. Gọi G là trọng tâm tam giác MAB. Chứng minh rằng ba điểm A C G thẳng hàng. 3. Giả sử OM = 3R. Kẻ đường kính BK của đường tròn (O;R). Gọi I là giao điểm của các đường thẳng MK và AB. Tính giá trị biểu thức T. + Cho p là số nguyên tố có dạng 4k + 3 (k thuộc N). Chứng minh rằng nếu a b thuộc Z thoả mãn a + b chia hết cho P thì a : p và b : p. Từ đó suy ra phương trình x2 + 4x + 9y2 = 58 không có nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang bao gồm 02 trang với 20 câu hỏi trắc nghiệm và 05 câu hỏi tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang: + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Hỏi số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Khi CMD = 60 độ, chứng minh rằng điểm E trên đường tròn là trọng tâm của tam giác MCD. c) Tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất khi M di chuyển trên tia đối của tia BA. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Long An
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Long An Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Long An Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Long An Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Long An đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh này bao gồm 6 bài toán dạng tự luận, được thực hiện trong thời gian 120 phút. Đề thi đi kèm với đáp án và lời giải chi tiết. Một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 của sở GD&ĐT Long An: + Trong mặt phẳng tọa độ Oxy, hai đường thẳng (d1): y = x – 3 và (d2): y = -3x + 1. Hãy vẽ đường thẳng (d1), tìm tọa độ giao điểm của (d1) và (d2), và viết phương trình đường thẳng (d) song song với (d1) và cắt trục tung tại điểm có tung độ bằng 7. + Cho tam giác ABC vuông tại A, có đường cao AH với AH = 4,8cm và AC = 8cm. Hãy tính độ dài đoạn thẳng CH và BC. + Đường bay lên của một máy bay tạo với phương nằm ngang một góc 20 độ. Để đạt độ cao 5000m, máy bay cần bay được quãng đường bao nhiêu? (kết quả làm tròn đến đơn vị mét).
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam bao gồm 01 trang với 06 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi sẽ diễn ra vào ngày 23 – 25 tháng 07 năm 2020. Trích đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam: Cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3. Hãy tìm giá trị của tham số m sao cho đường thẳng (d0) : y = 4x + m cắt đường thẳng (d) tại điểm có hoành độ dương thuộc (P). Cho ba số thực dương x, y, z sao cho x + y + z = 3. Hãy tìm giá trị lớn nhất của biểu thức H = 3xy + yz2 + zx2 − x2y. Cho tam giác ABC cân tại A (AB < AC), M là trung điểm của AC, G là trọng tâm của tam giác ABM. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh rằng OG vuông góc với BM. Lấy điểm N trên cạnh BC sao cho BN = BA. Vẽ NK vuông góc với AB tại K, BE vuông góc với AC tại E, KF vuông góc với BC tại F. Hãy tính tỉ số BE/KF. Đề tuyển sinh này đòi hỏi học sinh phải có kiến thức vững chắc về Toán và khả năng suy luận logic tốt để giải quyết các bài toán phức tạp. Chúc các thí sinh sẽ mang lại kết quả tốt trong kỳ thi sắp tới.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên: Cho số nguyên dương n sao cho 2n + 1 và 3n + 1 đều là các số chính phương. Chứng minh rằng số 15n + 8 là hợp số. Bạn Chi được thưởng kẹo mỗi ngày, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận không quá 10 chiếc. Chứng minh rằng trong một số ngày liên tiếp, tổng số kẹo Chi nhận là 27 chiếc. Cho đường tròn (I;r) nội tiếp tam giác ABC. Một số điểm và đường tròn khác đã được xác định. Chứng minh hai điều kiện quan trọng về tính chất và kích thước của các đường tròn và tam giác đều. Đề tuyển sinh này giúp học sinh thử thách khả năng giải quyết vấn đề và logic trong môn Toán. Nó cung cấp cơ hội cho học sinh thể hiện kiến thức và kỹ năng một cách chi tiết và logic. Hy vọng rằng các thí sinh sẽ làm tốt trong kỳ thi sắp tới.