Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào lớp 10 môn Toán sở GDĐT thành phố Hà Nội (1988 - 2023)

Tài liệu gồm 89 trang, được tổng hợp bởi thầy giáo Bùi Quốc Hoàn, tuyển tập đề thi chính thức tuyển sinh vào lớp 10 (hệ phổ thông và hệ chuyên) môn Toán sở Giáo dục và Đào tạo thành phố Hà Nội (giai đoạn từ năm 1988 đến năm 2023). Mở đầu : Kính chào các thầy giáo, cô giáo và các bạn học sinh. Trên tay các thầy giáo, cô giáo và các bạn học sinh đang là tuyển tập các đề thi vào 10 hệ phổ thông và hệ chuyên của thành phố Hà Nội từ năm học 1988 – 1989 đến năm học 2022 – 2023 được soạn thảo theo chuẩn LATEX. Tài liệu được soạn thảo với sự hỗ trợ của nhóm Toán và LATEX. Đặc biệt với cấu trúc gói đề thi ex_test của tác giả Trần Anh Tuấn, Đại học Thương Mại. Quá trình biên tập dựa trên đề thi các thầy giáo, cô giáo chia sẻ trên mạng không tránh được sơ xuất do tài liệu gốc không rõ. Rất mong thầy giáo, cô giáo thông cảm. Để tài liệu hoàn thiện và đầy đủ hơn thầy giáo, cô giáo có đề trong tài liệu còn thiếu hoặc sai sót mong thầy giáo, cô giáo gửi về Emai: [email protected]. Trân trọng cảm ơn. Hà Nội, ngày 19 tháng 06 năm 2022 Tác giả. Bùi Quốc Hoàn. Mục lục : 1 ĐỀ THI VÀO HỆ PHỔ THÔNG 4. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1988 – 1989 5. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1989 – 1990 6. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1990 – 1991 7. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1991 – 1992 8. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1992 – 1993 9. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1993 – 1994 10. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 1994 – 1995 11. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 12. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 13. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 14. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 15. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 16. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 17. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 18. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 19. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 20. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 21. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 22. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 23. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 24. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 25. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 26. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 27. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 28. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 29. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 30. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 31. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 32. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 33. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 34. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 35. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 36. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 37. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 38. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 39. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 40. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 41. 2 ĐỀ THI VÀO HỆ CHUYÊN 42. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 43. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 44. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 45. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 46. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 47. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 48. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 49. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 50. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 51. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 52. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 53. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 54. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 55. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 56. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 57. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 58. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 59. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 60. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 61. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 62. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 63. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 64. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 65. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 66. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 67. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 68. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 69. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 70. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 71. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 72. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 73. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 74. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 75. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 76. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 77. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 78. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 79. 38 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 80. 39 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 81. 40 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 82. 41 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 83. 42 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 84. 43 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 85. 44 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 86.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Chào đón quý thầy cô và các em học sinh lớp 9, mùa tuyển sinh năm nay đã đến. Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán, chúng tôi xin giới thiệu đề thi chính thức môn Toán của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Đề thi sẽ diễn ra vào ngày 18 tháng 06 năm 2022, và dưới đây là một số câu hỏi mẫu từ đề tuyển sinh: Phương trình của parabol (P) đi qua điểm M(3;3) và cắt đường thẳng (d): y = -1/2.x + m tại hai điểm A và B. Tìm phương trình của parabol (P) và giá trị của tham số m để điều này xảy ra. Chứng minh rằng nếu x1, x2, x3, x4 là nghiệm của hệ thức x2 + mx + 1 = 0 và x2 + nx + 1 = 0, thì áp dụng một quy tắc nhất định. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức S = x – y + 2 trong khi x và y thỏa mãn một đẳng thức cụ thể. Chứng minh các tính chất trong tam giác ABC nội tiếp đường tròn tâm O và chứng minh các quan hệ HE/HF = NB/NC, HE.MQ.HB = HF.MP.NC Hy vọng rằng đề thi này sẽ giúp các em tự tin và hiểu biết rõ hơn về kiến thức Toán cũng như chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao trong kỳ thi tuyển sinh!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau, được tổ chức vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau: - Cho Parabol (P): y = 3/2.x^2 và đường thẳng (d): y = 2mx + 1. a) Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên mặt phẳng Oxy và tìm tọa độ giao điểm của chúng. - Một xí nghiệp chế biến thủy sản dự kiến đóng 3,000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu, họ thực hiện đúng tiến độ, sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu, khiến họ hoàn thành sớm 1 ngày và vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đóng bao nhiêu hộp tôm xuất khẩu? - Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.
Đề tuyển sinh chuyên môn Toán (không chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (không chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau Đề thi tuyển sinh chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau. Kỳ thi diễn ra vào ngày 21 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau: Ngày của Cha, hay còn gọi là Father's Day, là dịp để con bày tỏ lòng biết ơn và hiếu thảo đối với cha. Để tỏ lòng biết ơn này, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834,700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng cho cha. Duy đã tính nhẩm và đến kết luận rằng nếu mua vào ngày không có khuyến mãi, anh ấy sẽ không đủ tiền để mua hai món hàng này. Bạn hãy xác định xem Duy có tính đúng không? Cho phương trình: x² + kx + 2 = 0 (k là tham số). Hãy tìm giá trị của k để phương trình có nghiệm kép, và tìm nghiệm kép đó. Sau đó, tìm giá trị của k để phương trình có hai nghiệm x₁, x₂ thỏa mãn. Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Từ đó, kết hợp với các thông tin đã cho, bài toán yêu cầu chúng ta chứng minh một số tính chất về các hình học liên quan. Hy vọng rằng đề thi và các câu hỏi trên sẽ giúp quý vị và các em học sinh lớp 9 rèn luyện kỹ năng Toán một cách hiệu quả và tự tin cho kỳ thi sắp tới. Chúc quý vị thành công!
Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh
Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Trà Vinh. Đề thi bao gồm hai phần: phần chung dành cho tất cả thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có một sân bóng đá hình chữ nhật, chiều dài lớn hơn chiều rộng 37m và diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của sân bóng đá này. 2. Một máy giặt và một tivi có tổng giá là 28,690,000 đồng. Sau khi giảm 10% cho máy giặt và 15% cho tivi, tổng giá của hai sản phẩm là 24,961,000 đồng. Hãy tính giá trị ban đầu của mỗi sản phẩm trước khi giảm giá. 3. Cho biểu thức B. Với giá trị nào của x thì B nhỏ nhất? Hãy tìm giá trị nhỏ nhất của biểu thức đó. Chúc các em học sinh thành công trong kỳ thi tuyển sinh và giữ gìn sức khỏe!