Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Hoàn Kiếm - Hà Nội

Thứ Sáu ngày 19 tháng 04 năm 2019, phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm – Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2018 – 2019, nhằm đánh giá tổng kết kiến thức Toán mà các em học sinh lớp 9 đã được truyền đạt trong học kỳ vừa qua. Đề kiểm tra HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàn Kiếm – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 5 bài toán, học sinh làm bài trong 90 phút (không tính khoảng thời gian giáo viên coi thi phát đề). [ads] Trích dẫn đề kiểm tra HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Để đóng gói hết 600 tập vở tặng các bạn nghèo vùng cao, lớp 9A dự định dùng một số thùng carton cùng loại, số tập vở trong mỗi thùng là như nhau. Tuy nhiên, khi đóng vở vào các thùng, có 3 thùng bị hỏng, không sử dụng được nên mỗi thùng còn lại phải đóng thêm 10 tập vở nữa mới hết. Tính số thùng carton ban đầu lớp 9A dự định sử dụng và số tập vở dự định đóng trong mỗi thùng. + Cho đường tròn (O), dây BC cố định. Trên cung lớn BC của (O), lấy điểm A (A khác B, A khác C) sao cho AB < AC. Hai tiếp tuyến qua B và C của (O) cắt nhau tại E. 1) Chứng minh tứ giác BOCE nội tiếp. 2) AE cắt (O) tại điểm thứ hai D (D khác A). Chứng minh EB^2 = ED.EA. 3) Gọi F là trung điểm của AD. Đường thẳng qua D và song song với BC cắt BC tại G. Chứng minh GF song song với AC. 4) Trên tia đối của tia AB lấy điểm E sao cho AH = AC. Chứng minh khi điểm A thay đổi trên cung lớn BC thì điểm H di động trên một đường tròn cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).
Đề thi học kì 2 Toán 9 năm 2022 - 2023 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kì 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi học kì 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi bằng 76 m, diện tích bằng 240 m2. Tìm chiều dài và chiều rộng của mảnh vườn đó. + Trong cùng một mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m + 1)x – 2m – 3 và Parabol (P): y = −x2 (với m là tham số). a) Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) khi m = 1. b) Tìm m để Parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt, sao cho hoành độ của hai điểm cùng nhỏ hơn 2. + Cho đường tròn (O). Từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MCD không đi qua tâm O (điểm C nằm giữa điểm M và điểm D; cát tuyến MDC và điểm A cùng thuộc nửa mặt phẳng bờ MO). Gọi H là giao điểm của MO và AB. a) Chứng minh: OM vuông góc với AB và MA2 = MC.MD; b) Chứng minh: Tứ giác CDOH nội tiếp đường tròn; c) Vẽ dây cung CE của đường tròn (O) đi qua H. Chứng minh DE song song với AB.
Đề thi cuối học kì 2 Toán 9 năm 2022 - 2023 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi cấu trúc 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi cuối học kì 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Bắc Giang : + Một vườn hoa nhỏ hình tròn có bán kính OA m 5. Ở phía ngoài vườn, người ta làm một lối đi xung quanh hình vành khăn (Hình 1) có diện tích bằng ba lần diện tích của vườn hoa. Diện tích của lối đi (đơn vị: 2 m) bằng? + Để tri ân khách hàng và kích cầu tiêu dùng, một siêu thị đã thực hiện chương trình khuyến mãi “Hàng hè giá sốc” giảm giá có thể đến 50% tất cả các mặt hàng điện tử, điện lạnh và gia dụng. Một khách hàng đã chọn mua hai mặt hàng của siêu thị, mặt hàng thứ nhất là 01 chiếc Tivi được giảm 35% và mặt hàng thứ hai là 01 chiếc tủ lạnh được giảm 40% so với giá niêm yết ban đầu. Do đó khi thanh toán, người đó chỉ phải trả 29 300 000 đồng cho cả hai mặt hàng, tiết kiệm được 17 700 000 đồng so với giá niêm yết ban đầu. Hỏi giá niêm yết ban đầu của mỗi mặt hàng đã nêu ở trên là bao nhiêu? + Cho đường tròn (O cm 2 5) có dây BC cm 3 cố định. Trên cung lớn BC lấy điểm A bất kì sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H (D AC E AB). 1) Chứng minh tứ giác BEDC là tứ giác nội tiếp. 2) Kẻ đường kính AK của đường tròn (O R). Chứng minh: EDB CBK. 3) Tính bán kính đường tròn ngoại tiếp tam giác DEH.