Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Sơn Tây Hà Nội

Nội dung Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Sơn Tây Hà Nội Bản PDF - Nội dung bài viết Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 Sytu xin chào quý thầy cô và các em học sinh lớp 9. Dưới đây là đề kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo thuộc UBND thị xã Sơn Tây, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 23 tháng 12 năm 2022. Trích dẫn đề cuối học kỳ 1 Toán lớp 9 năm 2022 – 2023 của phòng GD&ĐT Sơn Tây - Hà Nội: + Cho hàm số y = (m – 1)x + 4 (với m là tham số và m khác 1) có đồ thị là đường thẳng (d) a) Tìm các giá trị của m để hàm số đồng biến. b) Tìm m để đường thẳng (d) song song với đường thẳng y = x – 2. c) Gọi giao điểm của (d) với trục hoành là A, trục tung là B. Với giá trị nào của m thì tam giác OAB cân tại O. + Một bể bơi có bề mặt nước dạng hình chữ nhật, chiều dài đường chéo là 25m. Góc tạo bởi đường chéo và chiều rộng là 68 độ. Hãy tính chiều dài và chiều rộng của bể bơi (làm tròn đến số thập phân thứ nhất). + Cho điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính CD của đường tròn (O); DA cắt đường tròn (O) tại E. a) Chứng minh bốn điểm A, B, O, C cùng thuộc đường tròn. b) Chứng minh OA vuông góc BC và AE.AD = AH.AO. c) Gọi M là trung điểm của AC. Chứng minh rằng MF là tiếp tuyến của đường tròn (O). Đề thi trên hy vọng sẽ là cơ hội để các em học sinh thể hiện kiến thức và kỹ năng trong môn Toán của mình. Chúc các em ôn tập hiệu quả và đạt kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thăng Long – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề thi học kì 1 Toán 9 năm 2021 - 2022 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm 2021 – 2022 trường THCS Trưng Vương – Hà Nội.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 phòng GDĐT Đan Phượng - Hà Nội
Thứ Năm ngày 30 tháng 12 năm 2021, phòng Giáo dục và Đào tạo huyện Đan Phượng, thành phố Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2021 – 2022. Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội : + Cho hàm số y = (m – 2)x + 2 – m (m là tham số) có đồ thị là đường thẳng (d). 1) Tìm m để hàm số đã cho là hàm số bậc nhất. 2) Vẽ đồ thị của hàm số tại m = 3. 3) Tìm m để (d) song song với đồ thị hàm số y = 2x + 3. + Cho nửa đường tròn (O) đường kính AB, tiếp tuyến Bx. Qua điểm C trên nửa đường tròn (C khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Bx tại M. Tia AC cắt Bx ở N. 1) Chứng minh bốn điểm O, B, M, C cùng thuộc một đường tròn. 2) Chứng minh OM vuông góc với BC. 3) Chứng minh M là trung điểm của đoạn thẳng BN. 4) Kẻ CH vuông góc với AB tại H, AM cắt CH ở I. Chứng minh I là trung điểm của đoạn thẳng CH. + Cho x, y, z là các số nguyên dương có tổng bằng 2020. Tìm giá trị lớn nhất của biểu thức M = xyz.