Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT thành phố Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2019 – 2020 phòng GD&ĐT thành phố Thái Nguyên; đề thi có 01 trang với 06 bài toán dạng tự luận, học sinh làm bài trong 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT thành phố Thái Nguyên : + Bạn Lan có nhiều hơn 11 bài kiểm tra và các bài kiểm tra đều đạt 8, 9, 10 điểm. Tổng số điểm của các bài kiểm tra đó là 100 điểm. Hỏi bạn Lan có bao nhiêu bài kiểm tra và cho biết có bao nhiêu bài đạt 8, 9, 10 điểm. + Cho tam giác ABC vuông tại A có AH vuông góc với BC (H thuộc BC). Gọi D là chân đường phân giác trong của góc B (D thuộc AC). K là hình chiếu vuông góc của A trên BD. E là giao điểm của hai đường thẳng BD và AH. Chứng minh: 1/AK^2 = 1/AB^2 + 1/AE^2. [ads] + Cho tam giác ABC có ba góc nhọn và AB < AC. Đường phân giác trong của góc A cắt cạnh BC tại D. Đường tròn đường kính AD cắt AB, AC lần lượt tại E và F. Gọi M là giao điểm của EF và AD. a. Chứng minh M là trung điểm của EF. b.Gọi K là giao điểm của AD và đường tròn ngoại tiếp tam giác ABC (K khác A). Chứng minh AB.KC = AK.BD. c. Cho diện tích của tam giác ABC là 100 (đơn vị diện tích). Tính diện tích của tứ giác AEKF.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển HSG Toán 9 năm 2022 - 2023 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển chính thức học sinh giỏi tham dự kỳ thi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn đội tuyển HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Kim Thành – Hải Dương : + Cho a, b, c, k là các số tự nhiên thỏa mãn: 333 2 a b c abck k 2 1. Chứng minh rằng k − 1 chia hết cho 3. Tìm x, y nguyên biết: 2 2 7 4 12 5 0 x y xy x. + Cho ∆ABC vuông tại A, đường cao AH. Các đường phân giác của góc BAH, CAH cắt BC lần lượt tại E, F. a) Chứng minh: 2 2 BC EH CH BE và tâm đường tròn ngoại tiếp ∆AEF trùng với tâm đường tròn nội tiếp ∆ABC. Kí hiệu 1 2 d d lần lượt là các đường thẳng vuông góc với BC tại E, F. Chứng minh rằng 1 2 d d tiếp xúc với đường tròn nội tiếp ∆ABC. + Cho tam giác ABC. Gọi ABC lll lần lượt là độ dài các đường phân giác trong của góc A, B, C. Chứng minh rằng 2 cos 2 A bc A l b c và 1 1 1 111 ABC l l l abc.
Đề khảo sát HSG Toán 9 năm 2022 - 2023 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Kim Thành – Hải Dương : + Tìm a b để đa thức 3 2 f x x ax b 2 chia cho đa thức x − 1 dư 2, chia cho đa thức x − 2 dư 17. Cho abc là ba số nguyên tố cùng nhau thỏa mãn: 111 c ab. Chứng minh: M ab là số chính phương. + Cho tam giác ABC vuông tại A, có đường cao AH. Kẻ HI vuông góc với AB, HK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: a) 3 3 BI AB CK AC b) CK BH BI CH AH BC. Cho ∆ABC có G là trọng tâm, một đường thẳng bất kỳ qua G, cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: 3 AB AC AM AN. + Cho các số dương x, y, z thay đổi thỏa mãn: xy yz zx xyz. Tìm giá trị lớn nhất của biểu thức: 111 43 433 4 M x yz x y z xy z.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 29 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = –4×2 có đồ thị là parabol (P) và một điểm Q(0;−9). Hãy tìm hai điểm M, N trên (P) và có tọa độ là những số nguyên sao cho tứ giác OMQN là một tứ giác lồi có diện tích bằng 27/2 cm2 (đơn vị trên các trục tọa độ là cm). + Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), tiếp tuyến tại A của (O) cắt BC tại M. Kẻ tiếp tuyến MD của (O) (D khác A). Gọi G, E, F lần lượt là hình chiếu vuông góc của D lên BC, AB, AC. Chứng minh rằng: 1) MA2 = MB.MC và BC = 2R.sin BAC. 2) AB DB AC DC. 3) G là trung điểm EF. + Cho tam giác ABC vuông tại A. Từ một điểm I nằm trong tam giác ta kẻ IM vuông góc với BC, IN vuông góc với AC, IK vuông góc với AB (M thuộc BC, N thuộc AC, K thuộc AB). Xác định vị trí điểm I sao cho tổng IM2 + IN2 + IK2 nhỏ nhất.
Đề học sinh giỏi thành phố Toán THCS năm 2022 - 2023 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi thành phố Toán THCS năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. a) Chứng minh tứ giác BCQP nội tiếp. b) Hai đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Chứng minh rằng 2 MH MK MA. c) Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP. Chứng minh ba điểm IHK thẳng hàng. + Tìm độ dài nhỏ nhất của cạnh một hình vuông sao cho có thể đặt vào trong nó 5 hình tròn có bán kính bằng 1, biết rằng các hình tròn này đôi một không có quá một điểm chung. + Chứng minh rằng 3 6 6 6 … 6 1 5 6 27 3 6 6 … 6 (trong đó biểu thức chứa căn có 2023 dấu căn ở tử số và 2022 dấu căn ở mẫu số).