Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập HK2 Toán 12 năm 2019 - 2020 trường THPT Kim Liên - Hà Nội

Đề cương ôn tập HK2 Toán 12 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội gồm có 18 trang, bao gồm 03 đề thi ôn tập giúp học sinh khối 12 chuẩn bị cho kỳ thi học kỳ 2 Toán 12 sắp tới. Trích dẫn đề cương ôn tập HK2 Toán 12 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Trong các kết luận sau, kết luận nào sai? A.Với mọi số phức z, phần thực của z không lớn hơn môđun của z. B. Với mọi số phức z, phần ảo của z không lớn hơn môđun của z. C.Với mọi số phức z, môđun của z và môđun z luôn bằng nhau. D.Với mọi số phức z, z luôn khác số phức liên hợp của z. + Trong mặt phẳng tọa độ, tập hợp điểm M(x;y) biểu diễn của số phức z = x + yi (x và y thuộc R) thỏa mãn |z – 1 + 3i| = |z – 2 – i| là: A. Đường tròn đường kính AB với A(1;-3); B(2;1). B. Đường thẳng trung trực của đoạn thẳng AB với A(1;-3); B(2;1). C. Đường thẳng trung trực của đoạn thẳng AB với A(-1;3); B(-2;-1). D. Trung điểm của đoạn thẳng AB với A(1;-3); B(2;1). [ads] + Lễ hội hoa hồng được tổ chức tại Hà Nội có dựng một chiếc cổng đón khách có hình dạng là một parabol. Khoảng cách giữa hai chân cổng là 16m. Phần tô đen là phần trang trí hoa với chi phí 1m2 cần số tiền mua hoa là 200.000 đồng. Biết rằng phần không gian dành cho lối đi là hình chữ nhật MNPQ có MN = 8m, MQ = 10m. Hỏi số tiền mua hoa trang trí cổng gần với số tiền nào dưới đây?

Nguồn: toanmath.com

Đọc Sách

Đề cương cuối kỳ 2 Toán 12 năm 2022 - 2023 THPT Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề cương hướng dẫn ôn tập kiểm tra cuối học kỳ 2 môn Toán 12 năm học 2022 – 2023 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên.
Đề cương học kỳ 2 Toán 12 năm 2022 - 2023 trường THPT Bắc Thăng Long - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề cương ôn tập cuối học kỳ 2 môn Toán 12 năm học 2022 – 2023 trường THPT Bắc Thăng Long, thành phố Hà Nội. Trích dẫn Đề cương học kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Bắc Thăng Long – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu (S1), (S2) lần lượt có phương trình là x2 + y2 + z2 − 2x − 2y − 2z − 22 = 0, x2 + y2 + z2 − 6x + 4y + 2z + 5 = 0. Xét các mặt phẳng (P) thay đổi nhưng luôn tiếp xúc với cả hai mặt cầu đã cho. Gọi M (a; b; c) là điểm mà tất cả các mặt phẳng (P) đi qua. Tính tổng S = a + b + c. + Cho hàm số có bảng xét dấu của đạo hàm như sau: x f 0 (x) −∞ 1 3 5 +∞ − 0 + 0 − 0 +. Đặt g(x) = f(x + 2) + 13×3 − 2×2 + 3x + 2019. Khẳng định nào sau đây đúng? A. Hàm số y = g(x) đạt cực đại tại x = 1. B. Hàm số y = g(x) có 1 điểm cực trị. C. Hàm số y = g(x) nghịch biến trên khoảng (1; 4). D. g(5) > g(6) và g(0) > g(1). + Ông An có một khu vườn giới hạn bởi đường parabol và đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ thì parabol có phương trình y = x2 và đường thẳng là y = 25. Ông An dự định dùng một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua điểm O và M trên parabol để trồng một loại hoa. Hãy giúp ông An xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vườn nhỏ bằng 9 2.
Đề cương học kỳ 2 Toán 12 năm 2022 - 2023 trường THPT Phúc Thọ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề cương ôn thi cuối học kỳ 2 môn Toán 12 năm học 2022 – 2023 trường THPT Phúc Thọ, thành phố Hà Nội. TÓM TẮT LÝ THUYẾT. A. GIẢI TÍCH. I. NGUYÊN HÀM – TÍCH PHÂN – ỨNG DỤNG. 1. Nguyên hàm. 2. Tích phân. 3. Ứng dụng của tích phân trong hình học. II. SỐ PHỨC. 1. Số phức và các khái niệm liên quan. 2. Các phép toán trên tập số phức. 3. Phương trình bậc hai với hệ số thực. B. HÌNH HỌC. I. HỆ TỌA ĐỘ TRONG KHÔNG GIAN. 1. Véctơ và các phép toán véctơ. 2. Phương trình mặt cầu. II. PHƯƠNG TRÌNH MẶT PHẲNG. III. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. BÀI TẬP TRẮC NGHIỆM.
Ôn tập học kì 2 Toán 12 năm 2022 - 2023 trường THPT Trần Phú - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề cương hướng dẫn nội dung ôn tập kiểm tra cuối học kì 2 môn Toán 12 năm học 2022 – 2023 trường THPT Trần Phú, quận Hoàn Kiếm, thành phố Hà Nội. PHẦN GIẢI TÍCH. A. Nguyên hàm. B. Tích phân. C. Ứng dụng của tích phân. D. Số phức. PHẦN HÌNH HỌC. A. Tọa độ. B. Phương trình mặt phẳng. C. Phương trình đường thẳng. D. Phương trình mặt cầu. E. Khoảng cách. F. Góc. G. Vị trí tương đối giữa điểm, đường thẳng, mặt phẳng, mặt cầu. H. Tìm điểm thỏa mãn yêu cầu bài toán.