Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ninh Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh: 1. Cho phương trình $x^2 + 4x + 3m – 2 = 0$, với m là tham số. a. Giải phương trình với m = -1. b. Tìm giá trị của m để phương trình đã cho có một nghiệm x = 2. c. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 sao cho x1 + 2×2 = 1. 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 32 km. Một canô xuôi dòng từ bến A đến bến B rồi lập tức quay về bến A. Kể từ lúc khởi hành đến lúc về tới bến A hết tất cả 6 giờ. Tính vận tốc của cano khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. 3. Cho đường tròn (O;R) và A là một điểm nằm bên ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của đường tròn (O). AD cắt đường tròn tại điểm thứ hai là E. a. Chứng minh ABOC là tứ giác nội tiếp. b. Tính độ dài AH, biết R = 3cm, AB = 4cm. c. Chứng minh AE.AD = AH.AO. d. Tia CE cắt AH tại F. Chứng tỏ F là trung điểm của AH.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy - Nam Định
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán THPT năm 2018 : + Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng? + Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình? [ads] + Trong mặt phẳng tọa độ Oxy cho Parabol 2 (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. 1) Cho m = 4, hãy tìm tất cả các hoành độ giao điểm của (d) và (P). 2) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có tung độ là y1; y2 thỏa mãn √y1.√y2 = 5.
Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu - Nam Định lần 1
Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu – Nam Định lần 1 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 8 câu hỏi, chiếm 20% số điểm, phần tự luận gồm 5 bài toán, chiếm 80% số điểm, thí sinh làm bài trong thời gian 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán : + Đồ thị của hàm số y = (m – 2019)x + m + 2018 (m là tham số) tạo với trục Ox một góc nhọn khi và chỉ khi? + Cho hình nón có bán kính đáy là 6cm, chiều cao là 8cm. Diện tích xung quanh của hình nón là? + Cho hai đường tròn (O) và (O’) tiếp xúc ngoài. Số tiếp tuyến chung của hai đường tròn đó là?
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường Nguyễn Công Trứ - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường Nguyễn Công Trứ – Hà Nội gồm 1 trang với 5 câu hỏi trắc nghiệm, thời gian làm bài 120 phút, kỳ thi thử được tổ chức vào ngày 05 tháng 05 năm 2018, đề thi có đáp án . Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 : + Chiều dài của bể bơi là 120m. Trong một đợt tập bơi phòng chống đuối nước ở một trường THCS, mỗi học sinh phải thực hiện bài tập bơi từ đầu này sang đầu kia của bể bơi theo vận tốc quy định. Sau khi bơi được quãng đường đầu, học sinh A giảm vận tốc 1m/s so với vận tốc quy định trên quãng đường còn lại. Tính vận tốc theo quy định biết học sinh A về đến đầu kia của bể bơi chậm hơn quy định là 10 giây. [ads] + Cho phương trình x^2 – 6x + 2m + 1 = 0 (1) a) Tìm m để phương trình (1) có 2 nghiệm trái dấu. b) Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn: x_1^2 = x_2 – 4. + Cho a, b là các số thực không âm thỏa mãn: a + b ≤ 1. Chứng minh rằng: a^2.b^2(a^2 + b^2) ≤ 1/32.
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mạc Đĩnh Chi - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường THCS Mạc Đĩnh Chi – Hà Nội gồm 5 bài toán tự luận, thí sinh làm bài trong thời gian 120 phút, kỳ thi được tổ chức tại trường vào ngày 5 tháng 5 năm 2018, đề thi có lời giải chi tiết . Các dạng toán trong đề thi thử vào lớp 10 môn Toán: + Tính giá trị biểu thức, rút gọn biểu thức, tìm m. + Giải toán bằng cách lập phương trình, hệ phương trình. + Giải hệ phương trình vô tỉ. + Biện luận phương trình bậc hai theo tham số m. + Bài toán hình học phẳng liên quan đến đường tròn. + Giải phương trình 2 ẩn.