Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng nhị thức Niu-tơn

Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề nhị thức Niu-tơn, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2: Tổ Hợp Và Xác Suất. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Biết công thức khai triển nhị thức Niu-tơn. + Biết tính chất các số hạng. Kĩ năng: + Thành thạo khai triển nhị thức Niu-tơn, tìm số hạng, hệ số chứa x^k trong khai triển. + Tính tổng dựa vào khai triển nhị thức Niu-tơn. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Xác định các hệ số, số hạng trong khai triển nhị thức Niu-tơn. + Bài toán 1: Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n. + Bài toán 2: Tìm hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n. + Bài toán 3: Tìm hệ số lớn nhất trong khai triển nhị thức Niu-tơn. Dạng 2: Xác định điều kiện của số hạng thỏa mãn yêu cầu cho trước. Dạng 3: Tính tổng dựa vào nhị thức Niu-tơn. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

Một số bài toán về quy tắc đếm - Nguyễn Tiến Chinh
Tài liệu một số bài toán về quy tắc đếm của thầy giáo Nguyễn Tiến Chinh gồm 22 trang với các bài toán điển hình, có lời giải chi tiết.
Tính giá trị và chứng minh các biểu thức tổ hợp - Mai Ngọc Thắng
Chứng minh đẳng thức và tính giá trị biểu thức trong giải tích tổ hợp là một vấn đề khá rộng, nó có mặt trong những bài thi THPT và cả trong các đề thi HSG Quốc gia. Với mong muốn giúp các bạn có thêm tư liệu cho việc tự học, đây là những kiến thức tôi có được trong quá trình luyện thi với người thầy kính yêu Vũ Vĩnh Thái và thêm một ít tôi sưu tầm được, tôi xin tổng hợp lại thành một chuyên đề nho nhỏ cũng nhằm thêm mục đích là lưu trữ. Trong chuyên đề này hầu hết là liên quan đến tổ hợp nên các bạn cần nắm vững và sử dụng thuần thục 3 công thức liên quan đến tổ hợp như trên và trong từng mục tôi sẽ nhắc lại công thức áp dụng trong các bài tập thuộc mục đó. [ads] Các bài tập tôi nêu ra đều minh họa khá rõ cho phương pháp và sẽ có một số bài tập để các bạn có thể rèn luyện lại. Tôi sẽ cố gắng phân tích hướng giải ở một số bài toán với mong muốn giúp các bạn hiểu sâu sắc hơn về lời giải của bài toán đó.
Bài toán Tổ hợp - Đặng Thành Nam
Bài toán Tổ hợp – Đặng Thành Nam
Nhị thức Newton - Đặng Thành Nam
Nhị thức Newton – Đặng Thành Nam