Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm 2019 - 2020 trường An Lương Đông - TT Huế

Ngày … tháng 01 năm 2020, trường THPT An Lương Đông, Thừa Thiên Huế tổ chức kỳ thi kiểm tra học kỳ 1 môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT An Lương Đông – TT Huế mã đề 191 gồm 05 trang với 40 câu trắc nghiệm và 03 câu tự luận, thời gian học sinh làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường An Lương Đông – TT Huế : + Trong một cuộc thi có 10 câu hỏi trắc nghiệm, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Với mỗi câu, nếu chọn phương án trả lời đúng thì thí sinh được cộng 5 điểm, nếu chọn phương án trả lời sai sẽ bị trừ 1 điểm. Tính xác suất để một thí sinh làm bài bằng cách lựa chọn ngẫu nhiên phương án được 26 điểm, biết thí sinh phải làm hết các câu hỏi và mỗi câu hỏi chỉ chọn duy nhất một phương án trả lời (chọn giá trị gần đúng nhất)? + Cho 2 điểm phân biệt B, C cố định (BC không phải là đường kính) trên đường tròn(O), điểm A di động trên (O), M là trung điểm BC, H là trực tâm tam giác ABC. Khi A di chuyển trên đường tròn (O) thì H di chuyển trên đường tròn (O’) là ảnh của (O) qua phép tịnh tiến theo u. Khi đó u bằng? [ads] + Thầy Dương có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2? + Cho tứ diện ABCD có tất cả các cạnh đều bằng a. Gọi M và N lần lượt là trung điểm của AB và AC. E là điển trên cạnh CD với ED = 3EC. a) Xác định giao tuyến của hai mặt phẳng (MNE) và (BCD). b) Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD và tính chu vi thiết diện đó. + Trong không gian cho hai đường thẳng song song a và b. Kết luận nào sau đây đúng? A. Nếu c cắt a thì c cắt b. B. Nếu c chéo a thì c chéo b. C. Nếu đường thẳng c song song với a thì c song song hoặc trùng b. D. Nếu c cắt a thì c chéo b.

Nguồn: toanmath.com

Đọc Sách

Đề thi HKI lớp 11 môn Toán năm 2019 2020 trường Nguyễn Bỉnh Khiêm TP HCM
Nội dung Đề thi HKI lớp 11 môn Toán năm 2019 2020 trường Nguyễn Bỉnh Khiêm TP HCM Bản PDF Đề thi HKI Toán lớp 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 30 câu trắc nghiệm và 07 câu tự luận, phần trắc nghiệm chiếm 06 điểm, phần tự luận chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán lớp 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB, điểm P thuộc SC sao cho SP = 2PC. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Tìm giao điểm Q của SD và mặt phẳng (MNP). c) Tìm thiết diện của mặt phẳng (MNP) và hình chóp S.ABCD. d) Gọi I, J, K lần lượt là giao điểm của AD và MQ, MP và AC, NQ và BD. Chứng minh I, J, K thẳng hàng. + Có hai hộp chứa 8 bút xanh và 10 bút đỏ. Chọn ra hai bút. Tính xác suất để: a) Hai bút khác màu. b) Hai bút cùng màu. + Từ tập A = {0, 1, 2, 3, 4, 5} lập được bao nhiêu số tự nhiên thỏa mãn: a) Số gồm 4 chữ số phân biệt. b) Số chẵn gồm 4 chữ số phân biệt.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Đề thi học kỳ 1 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Thang máy của công ty A được thiết kế để mở cửa như sau: trên bảng điểu khiển có 10 nút được đánh số từ 0 đến 9, để mở cửa cần nhấn liên tiếp ba nút khác nhau sao cho ba số trên ba nút đó theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10. Nhân viên B không biết quy tắc mở cửa nói trên, đã nhấn ngẫu nhiên liên tiếp 3 nút khác nhau trên bảng điều khiển. a. Xây dựng biến cố ngẫu nhiên “Ba số trên ba nút theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10”. b. Tính xác suất để nhân viên B mở cửa thang máy được. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của AD, BC, SA. a) Tìm giao tuyến của (SAN) và (PCD). b) Tìm giao điểm của SB với mặt phẳng (MNP). c) G là trọng tâm tam giác SAB. Chứng minh SC // (GAN). + Khi khai triển (x –1)^n ta được hệ số của x3 là –20. Tìm n. File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Văn Cừ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Văn Cừ TP HCM Bản PDF Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2020, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Cho hình chóp SABCD có ABCD là hình thang (AB đáy lớn). Gọi E, F, M, N lần lượt là trung điểm các cạnh SA, SB, BC, AD. a) Tìm giao tuyến của 2 mặt phẳng (EBC) và (SAD). b) Chứng minh EF // (SMN). + Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của hai đường thẳng AC và BD; E, F lần lượt là trung điểm các cạnh SA và SB. Chứng minh (OEF) // (SCD). + Gieo 1 con súc sắc 2 lần. Tính xác suất mặt 6 chấm xuất hiện ít nhất 1 lần. File WORD (dành cho quý thầy, cô):
Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 trường Việt Úc TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 trường Việt Úc TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 1 Toán lớp 11 năm học 2019 – 2020 trường Việt Úc – TP HCM; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 11 năm học 2019 – 2020 trường Việt Úc – TP HCM : + Cho hình chóp S.BCDE có đáy là hình thang (với BC là đáy lớn và BC // ED). a/ Tìm giao tuyến của mặt phẳng (SBE) và (SCD); mặt phẳng (SBC) và (SED). b/ Gọi I, J lần lượt là trung điểm của SC và SD. Chứng minh: CD// (IJB). c/ Tìm giao điểm của BJ và mặt phẳng (SCE). d/ Xác định thiết diện của mặt phẳng (BIJ) với hình chóp S.BCDE. + Lớp 11A có 35 học sinh gồm 15 nữ và 20 nam. Cần chọn ngẫu nhiên 6 bạn để tham gia trồng cây tại rừng Cần Giờ. Tính xác suất để trong 6 bạn được chọn: i/ số bạn nam bằng số bạn nữ. ii/ có ít nhất 1 nam và ít nhất 1 nữ. + Từ các số {0; 1; 2; 3; 5; 6; 7; 8} lập được bao nhiêu số chẵn có 4 chữ số đôi một khác nhau. File WORD (dành cho quý thầy, cô):