Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường chuyên Lê Khiết Quảng Ngãi

Nội dung Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường chuyên Lê Khiết Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi; đề thi hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học kỳ 1 Toán lớp 11 năm 2023 – 2024 trường chuyên Lê Khiết – Quảng Ngãi : + Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau: Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây? + Cho tam giác T1 có diện tích bằng 1. Giả sử có tam giác T2 đồng dạng với tam giác T1 với tỉ số đồng dạng 1 (1) k k tam giác T3 đồng dạng với tam giác T2 với tỉ số đồng dạng 1 (1) k, tam giác Tn đồng dạng với tam giác Tn1 với tỉ số đồng dạng 1 (1) k k. Khi n tiến tới vô cùng, tính tổng diện tích của tất cả các tam giác theo k. + Một khối gỗ có các mặt đều là một phần của mặt phẳng với ABCD EFMH CK DH. Khối gỗ bị hỏng một góc (Hình 91). Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng R đi qua K và song song với mặt phẳng ABCD. a) Hãy giúp bác thợ mộc xác định giao tuyến của mặt phẳng R với các mặt của khối gỗ để cắt được chính xác. b) Gọi I J lần lượt là giao điểm DH BF, với mặt phẳng R. Biết BF DH 60 cm 75 cm CK 40 cm. Tính FJ.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Đề thi HK1 Toán lớp 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác ABC nhọn, nội tiếp đường tròn (O), có đường cao AD (D thuộc BC). Kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Gọi I là giao điểm của BF và CE. a) Gọi K là giao điểm của BF và DE, L là giao điểm của CE và DF. Chứng minh rằng KL song song với BC. b) Gọi M, N lần lượt là trung điểm của AD và AI. Chứng minh rằng M, N, O thẳng hàng. + Cho số nguyên dương n. Có bao nhiêu số tự nhiên chia hết cho 3, có n chữ số và các chữ số đều thuộc {1;2;3;6}. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x)f(y) – f(x + y) = 4/9.xy với mọi x, y thuộc R.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam Bản PDF Đề thi học kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 60% số điểm, phần tự luận gồm 03 câu, chiếm 40% số điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi điểm I và điểm M lần lượt là trung điểm của các đoạn thẳng SA và OC. 1 Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). 2 Gọi (α) là mặt phẳng chứa đường thẳng IM và song song với đường thẳng BD. Xác định thiết diện của mặt phẳng (α) với hình chóp S.ABCD. 3 Giả sử mặt phẳng (α) cắt đường thẳng SO tại điểm K. Tính tỉ số SK/KO. + Từ 30 câu hỏi trắc nghiệm gồm 15 câu dễ, 9 câu trung bình và 6 câu khó người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ cả 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, AD, SC. Thiết diện của hình chóp với mặt phẳng (MNQ) là đa giác có bao nhiêu cạnh?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi B là tập hợp tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau được lấy từ A. a) Tính số phần tử của B. b) Chọn ngẫu nhiên 2 số thuộc B. Tính xác suất để trong hai số được chọn có đúng 1 số có mặt chữ số 3. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có 13^n – 1 chia hết cho 12. + Tìm hệ số của x^20 trong khai triển Newton của (2x^5 – 4)^n biết n là số tự nhiên thỏa 2.2An + 50 = 2A2n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2020 – 2021. Đề thi học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số 1221 là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có 4 chữ số, tính xác suất chọn được số chia hết cho 7. + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là các điểm trên cạnh CD, AD, SA thỏa MD = 2MC, NA = 3ND, PA = 3PS. Gọi G là trọng tâm tam giác SBC. a) Tìm giao điểm K của đường thẳng BM và mặt phẳng (SAC). b) Chứng minh mặt phẳng (NPK) song song mặt phẳng (SCD). c) Chứng minh đường thẳng MG song song mặt phẳng (SAD). + Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.