Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển Toán 8 năm 2022 - 2023 hệ thống GD Archimedes School - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 hệ thống giáo dục Archimedes School, thành phố Hà Nội; đề thi gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 135 phút. Trích dẫn đề chọn đội tuyển Toán 8 năm 2022 – 2023 hệ thống GD Archimedes School – Hà Nội : + Cho các số nguyên dương a, b, c, d thỏa mãn điều kiện ab = cd. Chứng minh rằng (a + c)2 + (b + d)2 không thể là tích của ba số nguyên tố phân biệt. + Cho tam giác ABC cân tại A, có BC < BA. Gọi H là giao điểm của các đường cao BE và CF của tam giác ABC. a) Chứng minh tứ giác BFEC là hình thang cân. b) Lấy điểm M thuộc đoạn thẳng EF (M khác F và MF < ME). Đường trung trực của đoạn thẳng MF cắt đoạn thẳng AF tại điểm I. Đường trung trực của đoạn thẳng ME cắt đoạn thẳng AE tại điểm K. Gọi O là trung điểm của đoạn thẳng AH. Chứng minh rằng OI = OK. c) Gọi N là giao điểm của các đường thẳng IK và CF. Chứng minh rằng đường thẳng MN vuông góc với đường thẳng HK. + Trên bàn có 269 thẻ bài màu đỏ, 269 thẻ bài màu xanh và 269 thẻ bài màu tím. Mỗi bước, thầy Cẩn chọn ba thẻ bài nào đó cùng màu ra khỏi bàn và thêm vào bàn một thẻ bài khác màu. Cụ thể, nếu ba thẻ bài thầy Cẩn lấy ra khỏi bàn là màu đỏ thì thầy sẽ thêm vào bàn một thẻ bài màu xanh; nếu ba thẻ bài thầy Cẩn lấy ra khỏi bàn là màu xanh thì thầy sẽ thêm vào bàn một thẻ bài màu tím; còn nếu ba thẻ bài thầy Cẩn lấy ra khỏi bàn là màu tím thì thầy sẽ thêm vào bàn một thẻ bài màu đỏ. Thầy Cẩn sẽ thực hiện quá trình làm sao để trên bàn còn lại mỗi màu không quá hai thẻ bài. Hỏi khi đó trên bàn có bao nhiêu thẻ bài màu đỏ, bao nhiêu thẻ bài màu xanh, bao nhiêu thẻ bài màu tím?

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.
Đề học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn : + Cho a và b là hai số tự nhiên. Biết rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Hỏi tích ab chia cho 5 dư bao nhiêu? + Giải phương trình. + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh: BC AH HC.
Đề chọn học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Bắc Ninh
Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh : + Đa thức f(x) chia cho x + 1 thì được dư là 5, nếu chia cho x2 + 1 thì được dư là x + 2. Tìm dư trong phép chia f(x) cho x3 + x2 + x + 1. + Tìm các số nguyên x, y thỏa mãn: 5x + 53 = 2xy + 8y^2. + Cho hình vuông ABCD, gọi E là điểm bất kỳ trên cạnh BC, tia AE cắt DC tại M, tia DE cắt AB tại N, BM cắt CN tại K, NC cắt AD tại I. 1. Chứng minh: BC^2 = BN.CM và BM vuông góc với CN. 2. Gọi Q là hình chiếu của I trên BC. Tính góc AKQ. 3. Xác định vị trí của E trên cạnh BC để chu vi tam giác BKC lớn nhất.