Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức - Nguyễn Tài Chung

Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, hướng dẫn sử dụng nguyên lí Dirichle chứng minh bất đẳng thức, phù hợp với học sinh bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu sử dụng nguyên lí Dirichle chứng minh bất đẳng thức – Nguyễn Tài Chung: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Khẳng định gần như hiển nhiên này được gọi là Nguyên lý Dirichle. [ads] Bây giờ ta hình dung trên trục số, điểm 0 chia trục số thành 2 phần, hay 2 cái chuồng mà vách ngăn là số 0. Như thế với ba số a, b, c mà ta xem như là 3 con chim Bồ Câu thì sẽ có một cái chuồng chứa ít nhất hai con chim Bồ Câu, nghĩa là sẽ có hai số cùng không âm (tức là có hai con chim Bồ Câu cùng thuộc chuồng [0; +∞)) hoặc cùng không dương (tức là có hai con chim Bồ Câu cùng thuộc chuồng (−∞; 0]). Do đó ta có thể giả sử có hai số, mà ta gọi là a và b, sao cho ab ≥ 0. Như vậy, trong bài toán bất đẳng thức, khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán), ví dụ như đẳng thức xảy ra khi a = b = c = k thì ta có thể giả sử 2 số (a − k), (b − k) cùng không âm hoặc cùng không dương, tức là có thể giả sử (a − k)(b − k) ≥ 0. B. BÀI TẬP

Nguồn: toanmath.com

Đọc Sách

7 chuyên đề luyện thi vào lớp 10 môn Toán - Diệp Tuân
Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Diệp Tuân, tuyển tập 7 chuyên đề luyện thi vào lớp 10 môn Toán. Chuyên đề 1. Căn bậc hai và căn bậc ba. Chuyên đề 2. Hàm số bậc nhất và hàm số bậc hai. Chuyên đề 3. Phương trình và hệ phương trình. Chuyên đề 4. Phương trình chứa tham số m. Chuyên đề 5. Giải toán bằng cách lập phương trình và hệ phương trình.
Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2023 - 2024)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024. Chuyên đề 1. Căn thức và các bài toán liên quan. Chuyên đề 2. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Chuyên đề 3. Hàm số. Chuyên đề 4. Hệ phương trình. Chuyên đề 5. Phương trình. Chuyên đề 6. Hình học. Chuyên đề 7. Bất đẳng thức. Chuyên đề 8. Giá trị của biểu thức. Chuyên đề 9. Số học.