Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2)

Nội dung Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Ngày 13 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020 – 2021. Kỳ thi này dành cho thí sinh muốn thi vào các lớp chuyên Toán. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) bao gồm 01 trang với 04 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2): 1. Tìm tất cả các số nguyên dương a, b, c sao cho cả ba số 4a^2 + 5b, 4b^2 + 5c, 4c^2 + 5a đều là bình phương của số nguyên dương. 2. Chứng minh rằng nếu từ một bộ bốn số thực (a, b, c, d) ta xây dựng bộ số mới (a + b, b + c, c + d, d + a) và liên tiếp xây dựng các bộ số mới theo quy tắc trên, nếu ở hai thời điểm khác nhau ta thu được cùng một bộ số (có thể khác thứ tự) thì bộ số ban đầu phải có dạng (a, -a, a, -a). 3. Cho tam giác ABC cân tại A với BAC < 90 độ. Chứng minh rằng bốn điểm A, E, P, F cùng thuộc một đường tròn và các điểm L, S, T, R được xác định như sau... Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) chứa những câu hỏi thú vị và đòi hỏi sự suy luận logic, khả năng phân tích và giải quyết vấn đề của thí sinh. Chúc các thí sinh thành công trong kỳ thi của mình!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chung)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề chung dành cho tất cả các thí sinh) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thí sinh làm bài trong thời gian 120 phút, kết quả của bài thi này là cơ sở để tuyển sinh vào lớp 10 các trường THPT chuyên thuộc sở GD và ĐT Thái Bình, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 THPT chuyên năm 2018 – 2019 môn Toán sở Thái Bình : + Cho đường tròn tâm O bán kính a và điểm J có JO = 2a. Các đường thẳng JM, JN theo thứ tự là các tiếp tuyến tại M, tại N của đường tròn (O). Gọi K là trực tâm của tam giác JMN, H là giao điểm của MN với JO. a) Chứng minh rằng: H là trung điểm của OK. b) Chứng minh rằng: K thuộc đường tròn tâm O bán kính a. [ads] c) JO là tiếp tuyến của đường tròn tâm M bán kính r. Tính r. d) Tìm tập hợp điểm I sao cho từ điểm I kẻ được hai tiếp tuyến với đường tròn (O) và hai tiếp tuyến đó vuông góc với nhau. + Cho hai đường thẳng (d1): y = (-1/m)x + 1/m (với m là tham số, m khác 0). Gọi I(x0; y0) là tọa độ giao điểm của hai đường thẳng (d1) với (d2). Tính x0^2 + y0^2.
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT TP. HCM
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT TP. HCM được biên soạn theo hình thức tự luận với 8 bài toán, thí sinh làm bài trong thời gian 120 phút, kỳ thi được tổ chức vào ngày 03/06/2018 nhằm đánh giá và phân loại năng lực học Toán của các em học sinh khối lớp 9, để từ đó các trường THPT trên địa bàn Thành phố Hồ Chí Minh có cơ sở để tuyển sinh theo chỉ tiêu của mỗi trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 năm 2018 - 2019 môn Toán chuyên Lê Quý Đôn - Bình Định
Đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán chuyên Lê Quý Đôn – Bình Định : + Một người dự định đi từ A đến B cách nhau 120 km bằng xe máy với vận tốc không đổi để đến B vào thời điểm định trước. Sau khi đi được 1 giờ người đó nghỉ 10 phút, do đó để đến B đúng thời điểm đã định, người đó phải tăng vận tốc thêm 6km/ giờ so với vận tốc ban đầu trên quãng đường còn lại. Tính vận tốc ban đầu của người đó. [ads] + Cho tam giác ABC (AB < AC) có các góc đều nhọn nội tiếp trong đường tròn tâm O. AD là đường kính của đường tròn (O), H là trung điểm BC. Tiếp tuyến tại D của (O) cắt đường thẳng BC tại M. Đường thẳng MO cắt AB, AC lần lượt tại E và F. a) Chứng minh :MD^2 = MB.MC. b) Qua B kẻ đường thẳng song song với MO cắt đường thẳng AD tại P. Chứng minh bốn điểm B, H, D, P cùng nằm trên một đường tròn. c) Chứng minh O là trung điểm của EF.