Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng bán kỳ 1 Toán 12 năm 2018 - 2019 trường THPT Nho Quan A - Ninh Bình

Đề kiểm tra chất lượng bán kỳ 1 Toán 12 năm 2018 – 2019 trường THPT Nho Quan A – Ninh Bình mã đề 115 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, đề gồm 7 trang, học sinh làm bài thi trong vòng 90 phút, đề chỉ giới hạn trong nội dung chương trình Toán 12 đã học như hàm số và đồ thị, khối đa diện và thể tích khối đa diện, các bài toán thực tế có liên quan … đề kiểm tra có đáp án. Trích dẫn đề kiểm tra chất lượng bán kỳ 1 Toán 12 năm 2018 – 2019 trường THPT Nho Quan A – Ninh Bình : + Một người thợ nhôm kính nhận đơn đặt hàng làm một bể cá cảnh bằng kính dạng hình hộp chữ nhật không có nắp có thể tích 3,2m3; tỉ số giữa chiều cao của bể cá và chiều rộng của đáy bằng 2 (hình dưới). Biết giá một mét vuông kính để làm thành và đáy bể cá là 800 nghìn đồng. Hỏi người thợ đó cần tối thiểu bao nhiêu tiền để mua đủ số mét vuông kính làm bể cá theo yêu cầu (coi độ dày của kính là không đáng kể so với kích thước của bể cá). [ads] + Trong một hình đa diện, mệnh đề nào dưới đây đúng? A. Mỗi đỉnh là đỉnh chung của ít nhất ba mặt. B. Hai mặt bất kỳ có ít nhất một cạnh chung. C. Hai cạnh bất kỳ có ít nhất một điểm chung. D. Hai mặt bất kỳ có ít nhất một điểm chung. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2x^4 + 2mx^2 – 3m/2 có ba điểm cực trị, đồng thời ba điểm cực trị này cùng với gốc tọa độ O tạo thành bốn đỉnh của một tứ giác nội tiếp được. Tính tổng tất cả các phần tử của S.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lần 3 lớp 12 môn Toán năm 2020 2021 trường Quế Võ 1 Bắc Ninh
Nội dung Đề khảo sát chất lượng lần 3 lớp 12 môn Toán năm 2020 2021 trường Quế Võ 1 Bắc Ninh Bản PDF Ngày … tháng 04 năm 2021, trường THPT Quế Võ 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 lần thứ ba. Đề khảo sát chất lượng lần 3 Toán lớp 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 3 Toán lớp 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol,mỗi nhịp cách nhau 40m, biết 2 bên đầu cầu và giữa mối nhịp nối người ta xây 1 chân trụ rộng 5m. Bề dày và bề rộng của nhịp cầu không đổi là 20 cm (mặt cắt của một nhịp cầu được mô phỏng như hình vẽ). Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu (làm tròn đến hàng đơn vị). + Một điện thoại đang nạp pin, dung lượng pin nạp được tính theo công thức mũ như sau với t là khoảng thời gian tính bằng giờ và Q0 là dung lượng nạp tối đa. Hãy tính thời gian nạp pin của điện thoại tính từ lúc cạn hết pin cho đến khi điện thoại đạt được 90% dung lượng pin tối đa. + Gọi A là tập hợp các số tự nhiên có 4 chữ số khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số từ tập hợp A. Xác suất để số lấy được là số tự nhiên không lớn hơn 2503 là? File WORD (dành cho quý thầy, cô):
Đề khảo sát lớp 12 môn Toán lần 1 năm 2020 2021 trường THPT Lê Lai Thanh Hóa
Nội dung Đề khảo sát lớp 12 môn Toán lần 1 năm 2020 2021 trường THPT Lê Lai Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng Toán lớp 12 lần 1 năm học 2020 – 2021 trường THPT Lê Lai, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết các câu VD – VDC. Trích dẫn đề khảo sát Toán lớp 12 lần 1 năm 2020 – 2021 trường THPT Lê Lai – Thanh Hóa : + Một cuộn túi nilon PE gồm nhiều túi nilon như hình vẽ có lõi rỗng là một hình trụ bán kính đáy của phần lõi là r cm 1,5, bán kính đáy của cuộn nilon là R cm 3. Biết chiều dày mỗi lớp nilon là 0,05mm, chiều dài của mỗi túi nilon là 25cm. Số lượng túi nilon trong cuộn gần bằng? + Cho parabol cắt trục hoành tại hai điểm A, B và đường thẳng d. Xét parabol P2 đi qua A, B và có đỉnh thuộc đường thẳng y a. Gọi S1 là diện tích hình phẳng giới hạn bởi P1 và d 2 S là diện tích hình phẳng giới hạn bởi P2 và trục hoành. Biết 1 2 S S (tham khảo hình vẽ bên). Tính T. + Cho hàm số có đạo hàm xác định trên R. Đồ thị hàm số như hình vẽ dưới đây. Hỏi hàm số có bao nhiêu điểm cực đại và bao nhiêu điểm cực tiểu? A. 2 điểm cực đại, 1 điểm cực tiểu. B. 2 điểm cực tiểu, 1 điểm cực đại. C. 2 điểm cực đại, 3 điểm cực tiểu. D. 2 điểm cực tiểu, 3 điểm cực đại. File WORD (dành cho quý thầy, cô):