Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Cần Thơ

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Cần Thơ Bản PDF Thứ Ba ngày 16 tháng 11 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Cần Thơ gồm 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Cần Thơ : + Cho tam giác ABC không là tam giác cân. Đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi P là hình chiếu của D lên EF và M là trung điểm của BC. Hai tia AP và IP cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại G và Q. Chứng minh rằng 4.1. Điểm Q thuộc đường tròn ngoại tiếp tam giác AEF. 4.2. Đường thẳng GD đi qua điểm chính giữa cung BC chứa A. 4.3. Điểm D là tâm đường tròn nội tiếp tam giác QGM. + Cho a, b, c là các số nguyên dương. Chứng minh rằng nếu là số nguyên thì abc là lập phương của một số nguyên. + Một công ty xây dựng đang lên kế hoạch thiết kế một khu phức hợp gồm tổ hợp 7 khu tiện ích hạ tầng tách biệt nhau (khu biệt thự, khu chung cư, trường học, trung tâm thương mại, bệnh viện, trung tâm hành chính và công viên). Ngoài việc tập trung xây dựng hệ thống hạ tầng, công ty này còn đặt ra mục tiêu là tăng cường chất lượng không khí trong khu phức hợp bằng cách xây dựng thêm các lối đi trồng nhiều cây xanh. Nếu xem mỗi khu tiện ích là một điểm trên bảng thiết kế thì người ta có thể thiết kế được nhiều nhất bao nhiêu lối đi với yêu cầu mỗi lối đi là một đường tròn đi qua đúng 4 trong 7 điểm đó.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh
Đề thi chọn học sinh giỏi Toán 12 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC vuông cân tại A, có trọng tâm G. Gọi E, H lần lượt là trung điểm của các cạnh AB, BC; D là điểm đối xứng với H qua A, I là giao điểm của đường thẳng AB và đường thẳng CD. Biết điểm D (-1; -1), đường thẳng IG có phương trình 6x – 3y – 7 = 0 và điểm E có hoành độ bằng 1. Tìm tọa độ các đỉnh của tam giác ABC. + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. [ads] + Cho hình chóp S.ABC có mặt đáy là tam giác đều cạnh a và hình chiếu của S lên mặt phẳng (ABC) là điểm H nằm trong tam giác ABC sao cho góc AHB = 150 độ, góc BHC = 120 độ, góc CHA = 90 độ. Biết tổng diện tích các mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HAC bằng 31/3.πa^2. Tính theo a thể tích khối chóp S.ABC. + Cho hàm số y = (x – 2)/(x + 1) có đồ thị là (C) và M là điểm thuộc (C). Tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của hai tiệm cận. Tìm tọa độ điểm M sao cho bán kính đường tròn nội tiếp tam giác IAB lớn nhất.
Đề thi chọn HSG Toán 12 năm học 2017 - 2018 trường THPT Lê Quý Đôn - Thái Bình
Đề thi chọn HSG Toán 12 năm học 2017 – 2018 trường THPT Lê Quý Đôn – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi : + Cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của B lên AC; M, N lần lượt là trung điểm của AH, BH. Trên cạnh CD lấy điểm K sao cho MNCK là hình bình hành. Biết M(9/5; 2/5), K(9; 2) và các đỉnh B, C lần lượt nằm trên các đường thẳng d1: 2x – y + 2 = 0; d2: x – y – 5 = 0. Tìm toạ độ các đỉnh của hình chữ nhật ABCD biết hoành độ điểm C lớn hơn 4. [ads] 2) Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông tại C, BC = 3a, AC = 4a, cạnh BB’ = 2√22a/3. Hình chiếu vuông góc của B’ trên (ABC) trùng với trọng tâm tam giác ABC. Tính theo a khoảng cách giữa hai đường thẳng BB’ và AC’. 3) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 1, góc BAD = 60 độ, SA = SB = SD = 1. Gọi M, N là hai điểm lần lượt thuộc các cạnh AB và AD sao cho mp(SMN) vuông góc với (ABCD). Đặt AM = x, AN = y, tìm x, y để diện tích toàn phần của tứ diện SAMN nhỏ nhất.
Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T ≠ A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc OH b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). [ads] + Cho S là tập gồm 2017 số nguyên tố phân biệt và M là tập gồm 2018 số tự nhiên phân biệt sao cho mỗi số trong M đều không là số chính phương và chỉ có ước nguyên tố thuộc S. Chứng minh rằng có thể chọn ra trong M một số số có tích là một số chính phương. + Có 32 học sinh tham gia 33 câu lạc bộ, mỗi học sinh có thể tham gia nhiều câu lạc bộ và mỗi câu lạc bộ có đúng 3 học sinh tham gia. Biết rằng không có 2 câu lạc bộ nào có 3 học sinh giống nhau. Chứng minh rằng có 2 câu lạc bộ chung nhau đúng 1 học sinh.
Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, thời gian làm bài 180 phút.