Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề thi chất lượng giữa học kỳ 2 Toán 9

THCS. giới thiệu đến bạn đọc tài liệu tuyển tập 10 đề thi chất lượng giữa học kỳ 2 Toán 9, bộ đề được biên soạn bởi thầy Lương Tuấn Đức nhằm giúp các em học sinh lớp 9 tự ôn tập để chuẩn bị cho kỳ kiểm tra định kỳ môn Toán 9 giai đoạn giữa học kỳ 2 của năm học. Các đề thi chất lượng giữa học kỳ 2 Toán 9 trong tài liệu được biên soạn theo hình thức tự luận với 05 câu hỏi và bài toán ở mỗi đề thi, đây là dạng đề được nhiều trường Trung học Cơ sở và Phòng Giáo dục & Đào tạo áp dụng, học sinh làm bài trong 90 phút. [ads] Trích dẫn tài liệu 10 đề thi chất lượng giữa học kỳ 2 Toán 9 : + Cho nửa đường tròn (O;R), đường kính AB, K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (M khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM, Q là giao điểm của AP với BM, E là giao điểm của BP và AM. 1. Chứng minh PQME là tứ giác nội tiếp. 2. Chứng minh hai tam giác AKN, BKM bằng nhau và AM.BE = AN.AQ. 3. Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác OMP. Chứng minh khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định. + Trong quý I năm 2018, hai đội thuyền đánh cá bắt được tổng cộng 360 tấn cá. Sang quý I năm 2019 đội thứ nhất vượt mức 10% và đội thứ hai vượt mức 8% nên cả hai đội đánh bắt được 393 tấn. Hỏi quý I mỗi năm mỗi đội đánh bắt được bao nhiêu tấn cá? + Cho parabol (P): y = x^2 và đường thẳng d: y = ax – a. 1. Tìm a để đường thẳng d cắt trục tung tại điểm có hoành độ nhỏ hơn 3. 2. Tìm a để (P) cắt d tại hai điểm M(x1;y1), N(x2;y2) thỏa mãn |x1 – x2| ≥ √5.

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Bế Văn Đàn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Bảy ngày 02 tháng 03 năm 2024. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Bế Văn Đàn – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Một xe máy đi từ A đến B với một vận tốc đã định. Nếu vận tốc tăng thêm 20km/h thì đến B sớm 1 giờ so với dự định, nếu vận tốc giảm đi 10km/h thì đến B muộn 1 giờ so với dự định. Tính vận tốc và thời gian dự định của xe máy. + Cho parabol (P): y = x2 có đồ thị là parabol (P) và hàm số y = -x + 2 có đồ thị là đường thẳng d. a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm A, B của đường thẳng (d) và Parabol (P) bằng phép tính. Tính diện tích tam giác AOB. + Cho đường tròn (O; R) đường kính AB. Điểm I nằm giữa A và B sao cho IA < IB. Qua I vẽ dây MN vuông góc với AB. Trên đoạn MI lấy điểm E (E khác M; E khác I). Tia AE cắt đường tròn tại điểm thứ hai là K. 1) Chứng minh tứ giác BKEI nội tiếp. 2) Chứng minh: AE.AK = AM2. 3) Chứng minh: 4R2 = BI.BA + AE.AK. 4) Xác định vị trí của điểm I sao cho chu vi tam giác MIO đạt giá trị lớn nhất. Tính giá trị lớn nhất đó theo R.
Đề giữa học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Phan Chu Trinh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai Tổ sản xuất phải làm được 330 sản phẩm. Nhưng khi thực hiện, do Tổ 1 làm vượt mức kế hoạch 10%, Tổ 2 làm giảm 15% so với mức kế hoạch nên cả hai Tổ làm được 318 sản phẩm. Tính số sản phẩm mà mỗi Tổ phải làm theo kế hoạch. + Một sân vận động có đường chạy đua dài 400m (hình bên). Đường chạy gồm các đoạn AB, CD và hai cung tròn có đường kính là BC và AD. Biết ABCD là hình chữ nhật và AB = 100m. Tính độ dài đường kính BC (lấy π ≈ 3,14; kết quả làm tròn đến chữ số thập phân thứ 2). + Cho nửa đường tròn tâm (O) đường kính AB R 2. Kẻ hai tiếp tuyến Ax, By với nửa đường tròn. Gọi M là trung điểm của OA và lấy điểm N thuộc nửa đường tròn sao cho NA < NB. Đường thẳng đi qua N và vuông góc với MN cắt Ax, By lần lượt tại C và D. a) Chứng minh tứ giác MNDB nội tiếp b) Chứng minh: ANM BND và AC.BD AM.BM 2 3 4 R c) Xác định vị trí của N trên nửa (O) sao cho diện tích ∆ CMD đạt giá trị nhỏ nhất.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi mã đề 901 và mã đề 902 gồm 01 trang, hình thức 100% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Ngọc Lâm – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất 800 sản phẩm trong một thời gian nhất định. Thực tế do áp dụng kỹ thuật mới nên tổ I đã vượt mức 15% và tổ II đã vượt mức 20%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 145 sản phẩm. Tính số sản phẩm được giao của mỗi tổ theo kế hoạch? + Cho hàm số y = x2 (P) và đường thẳng (d): y = 4x + 5 a) Vẽ đồ thị hàm số y = x2. b) Tìm tọa độ giao điểm của (d) và (P). + Cho điểm S nằm ngoài đường tròn (O;R), kẻ các tiếp tuyến SA, SB (A, B là tiếp điểm) và cát tuyến SMN với (O) (SM < SN và SN nằm trong góc OSA). a) Chứng minh: Tứ giác SAOB là tứ giác nội tiếp. b) Chứng minh: SA2 = SM.SN. c) Gọi K là giao điểm của SO và AB. Chứng minh: Tích OK.OS không phụ thuộc vào vị trí của điểm S. d) Kẻ MH vuông góc với OA; MH cắt AN, AB theo thứ tự tại D và E. Chứng minh: E là trung điểm của DM.
Đề giữa học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Bỉnh Khiêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Bỉnh Khiêm, quận Long Biên, thành phố Hà Nội; đề thi mã đề 901 và 902 gồm 02 trang, hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Bỉnh Khiêm – Hà Nội : + Trong một đường tròn, khẳng định nào sau đây sai? A. Các góc nội tiếp bằng nhau chắn các cung bằng nhau. B. Các góc nội tiếp cùng chắn một cung thì bằng nhau. C. Các góc nội tiếp chắn các cung bằng nhau thì bằng nhau. D. Góc nội tiếp có số đo bằng số đo của góc ở tâm cùng chắn một cung. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất phải làm 700 sản phẩm. Nhưng do tổ I làm vượt mức 15% so với kế hoạch, tổ II làm vượt mức kế hoạch 20% nên cả hai tổ đã làm được 820 sản phẩm. Tính số sản phẩm mỗi tổ phải làm theo kế hoạch? + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường trong (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. a) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. b) Chứng minh AB.AC = AM2. c) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử ba điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.