Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GDĐT Quận 3 - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 PDF đề thi + đáp án + lời giải chi tiết + hướng dẫn chấm điểm đề thi học kỳ 1 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Quận 3, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Quận 3 – TP HCM : + Vào cuối học kì I, trường trung học cơ sở A có tỉ lệ học sinh xếp loại học lực trung bình trở lên ở khối 7 là 90% học sinh toàn khối 7 và ở khối 9 là 84% học sinh toàn khối 9. Nếu tính chung cả hai khối thì số học sinh xếp loại học lực trung bình trở lên là 864 em, chiếm tỉ lệ 86,4% số học sinh cả khối 7 và khối 9. Hãy cho biết mỗi khối trên có bao nhiêu học sinh? + Bụi mịn hay bụi PM 2.5 là những hạt bụi li ti trong không khí có kích thước 2,5 micromet trở xuống (nhỏ hơn khoảng 30 lần so với sợi tóc người). Loại bụi này hình thành từ các chất như Carbon, Sulfur, Nitrogen và các hợp chất kim loại khác lơ lửng trong không khí. Bụi PM 2.5 có khả năng len sâu vào phổi, đi trực tiếp vào máu và có khả năng gây ra hàng loạt bệnh về ung thư, hô hấp,… Để xác định mức độ bụi PM 2.5 trong không khí người ta thường dùng chỉ số AQI, ví dụ 5AQI, 7AQI. Chỉ số AQI càng lớn thì độ ô nhiễm không khí càng nhiều. Tại thành phố B, trong tháng 11 vừa qua, người ta đo được mức độ bụi PM 2.5 trong không khí vào lúc 6 giờ sáng là 79 AQI và trung bình mỗi giờ tăng 11 AQI, chỉ giảm đi kể từ 18 giờ cùng ngày. a) Gọi 𝑦 là mức độ bụi PM 2.5 trong không khí của thành phố B, t là số giờ kể từ 6 giờ sáng. Hãy biểu diễn mối liên hệ giữa 𝑦 và 𝑡 trong khoảng thời gian từ 6 giờ sáng đến 18 giờ cùng ngày. b) Tính mức độ bụi PM 2.5 của thành phố B vào lúc 15 giờ. + Một chiếc cầu dài 40 mét bắc qua một con kênh được thiết kế kiểu mái vòm là một cung tròn (như hình vẽ) có chiều cao từ mặt cầu đến đỉnh vòm là 3 mét. Tính bán kính của đường tròn chứa cung tròn của vòm cầu (làm tròn đến chữ số thập phân thứ hai).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thạch Thán - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội : + Cho đường thẳng (d) có phương trình y = ax + b. a) Tìm a, b biết đồ thị hàm số đi qua điểm A(0; 2) và điểm B (-2; -4). b) Tìm phương trình đường thẳng (d’) song song với (d), cắt trục hoành tại điểm 3, cắt trục tung tại C. Tính độ dài AC. + Cho tam giác ABC vuông tại A, đường cao AH, AB = 8cm, AC = 15cm. a) Tính BC, AH, HC. b) Chứng minh SinB = CosC c) Gọi P, Q lần lượt là hình chiếu của H trên AB, AC. Kẻ tiếp tuyến CM với đường tròn ngoại tiếp tứ giác APHQ (M thuộc cung nhỏ AQ). Chứng minh CM2 = CQ.CA. d) Tính PA.PB + AQ.QC. + Thực hiện các phép tính sau.
Đề thi HK1 Toán 9 năm 2021 - 2022 trường THCS THPT Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK1 Toán 9 năm 2021 – 2022 trường THCS & THPT Lê Quý Đôn – Hà Nội.
Đề thi cuối học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Bế Văn Đàn - Hà Nội
Đề kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 01 năm 2022.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.