Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp tìm Nguyên hàm - Nguyễn Đình Sỹ

Tài liệu gồm 34 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số, tài liệu do thầy Nguyễn Đình Sĩ biên soạn. Để tìm họ nguyên hàm của một hàm số y = f(x), cũng có nghĩa là ta đi tính một tích phân bất định: I = ∫f(x)dx, ta có ba phương pháp: + Phương pháp phân tích . + Phương pháp đổi biến số . + Phương pháp tích phân từng phần Do đó điều quan trọng là f(x) có dạng như thế nào để ta nghiên cứu có thể phân tích chúng sao cho có thể sử dụng bảng nguyên hàm cơ bản để tìm được nguyên hàm của chúng hoặc sử dụng hai phương pháp còn lại. Sau đây là một số gợi ý giúp các em có thể nhận biết dạng của f(x) mà có phương pháp phân tích cụ thể, từ đó tìm được nguyên hàm của chúng. [ads] PHƯƠNG PHÁP TÌM NGUYÊN HÀM BẰNG CÁCH PHÂN TÍCH I. Trường hợp f(x) là một hàm đa thức II. Trường hợp f(x) là phân thức hữu tỷ: f(x) = P(x)/Q(x) Nếu bậc của P(x) cao hơn hoặc bằng bậc của Q(x), thì bằng phép chia đa thức ta lấy P(x) chia cho Q(x) được một đa thức A(x) và một số dư R(x) mà bậc của R(x) thấp hơn bậc của Q(x). Như vậy tích phân của A(x) ta tính được ngay (như đã trình bày ở trên). Do vậy ta chỉ nghiên cứu cách tìm nguyên hàm của f(x) trong trường hợp bậc tử thấp hơn bậc của mẫu, nghĩa là f(x) có dạng: f(x) = R(x). + Trường hợp mẫu số không có nghiệm thực có nghiệm thực (Tức là mẫu số vô nghiệm) + Trường hợp mẫu số có nhiều nghiệm thực đơn + Trường hợp mẫu số có cả trường hợp không có nghiệm thực và trường hợp có nhiều nghiệm thực đơn III. Nguyễn hàm các hàm số lượng giác Để xác định nguyên hàm các hàm số lượng giác ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau: 1. Sử dụng dạng nguyên hàm cơ bản 2. Sử dụng phương pháp biến đổi lượng giác đưa về các nguyên hàm cơ bản 3. Phương pháp đổi biến 4. Phương pháp tích phân từng phần TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT QG môn Toán
Tài liệu gồm 409 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. CHỦ ĐỀ 1 . NGUYÊN HÀM CỦA HÀM SỐ CƠ BẢN. Dạng 1: Nguyên hàm của hàm số cơ bản. Dạng 2: Nguyên hàm của hàm số phân thức hữu tỷ. Dạng 3: Tìm nguyên hàm thỏa mãn điều kiện cho trước. Dạng 4: Tìm nguyên hàm bằng phương pháp đổi biến số. Dạng 5: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 6: Nguyên hàm hàm ẩn. CHỦ ĐỀ 2 . TÍCH PHÂN CỦA HÀM SỐ CƠ BẢN. Dạng 7: Tích phân của hàm số cơ bản. Dạng 8: Tính tích phân bằng phương pháp đổi biến. Dạng 9: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 10: Tích phân hàm ẩn và tích phân đặc biệt. Dạng 11: Tính tích phân bằng phương pháp vi phân. Dạng 12: Ứng dụng của tích phân tính diện tích hình phẳng. Dạng 13: Ứng dụng tích phân vào bài toán chuyển động.
Tài liệu chuyên đề ứng dụng của tích phân trong hình học
Tài liệu gồm 222 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề ứng dụng của tích phân trong hình học, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 3 . ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. DIỆN TÍCH HÌNH PHẲNG: + Dạng 1. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x), trục Ox, x = a và x = b. + Dạng 2. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), x = a và x = b. + Dạng 3. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x) và y = g(x). THỂ TÍCH VẬT THỂ TRÒN XOAY: + Dạng 1. Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = a, x = b quanh trục Ox. + Dạng 2. Thể tích khối tròn xoay sinh bởi hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a và x = b khi quay quanh trục Ox. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Ứng dụng tích phân để tính diện tích. + Dạng 2. Ứng dụng tích phân để tính thể tích. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC).
Tài liệu chuyên đề tích phân và một số phương pháp tính tích phân
Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề tích phân và một số phương pháp tính tích phân, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 2 . TÍCH PHÂN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Sử dụng định nghĩa tích phân. + Dạng 2. Sử dụng tính chất tích phân. + Dạng 3. Sử dụng tính chất chèn cận để tính tích phân. + Dạng 4. Sử dụng định nghĩa tích phân vào các bài toán khác. + Dạng 5. Phương pháp đổi biến số loại 1 để tính tích phân. + Dạng 6. Phương pháp đổi biến số loại 2 để tính tích phân. + Dạng 7. Phương pháp từng phần để tính tích phân. + Dạng 8. Kỹ thuật tích phân từng phần hàm ẩn. + Dạng 9. Tính tích phân dựa vào tính chất. + Dạng 10. Kỹ thuật phương trình hàm. + Dạng 11. Kỹ thuật biến đổi. + Dạng 12. Kỹ thuật đạo hàm đúng. + Dạng 13. Kỹ thuật đưa về bình phương loại 1. + Dạng 14. Kỹ thuật đưa về bình phương loại 2 – kỹ thuật Holder. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Tích phân hàm số hữu tỷ. + Tích phân đổi biến. + Tích phân từng phần. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Tích phân hàm ẩn. + Dạng 2. Tích phân một số hàm đặc biệt.
Tài liệu chuyên đề nguyên hàm và một số phương pháp tìm nguyên hàm
Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề nguyên hàm và một số phương pháp tìm nguyên hàm, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . NGUYÊN HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương pháp đổi biến số. + Dạng 2. Phương pháp nguyên hàm từng phần. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Nguyên hàm cơ bản. + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng 3. Nguyên hàm của hàm số hữu tỉ. + Dạng 4. Phương pháp nguyên hàm từng phần. 3. Bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Bài toán tích phân liên quan đến đẳng thức: u(x).f'(x) + u'(x).f(x) = h(x). + Dạng 2. Bài toán tích phân liên quan đến biểu thức: f'(x) + f(x) = h(x). + Dạng 3. Bài toán tích phân liên quan đến biểu thức: f'(x) – f(x) = h(x). + Dạng 4. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).f(x) = h(x). + Dạng 5. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).f(x) = 0. + Dạng 6. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).[f(x)]^n = 0.