Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nội

Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nội Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nội Chào đón quý thầy cô và các em học sinh! Đến với chúng tôi, quý vị sẽ được giới thiệu về đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2023-2024 tại sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi này dự kiến diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023, với đề thi đầy đủ đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong Đề tuyển sinh lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một phân xưởng cần làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm cần làm theo kế hoạch. Sau khi làm xong 900 sản phẩm 3 ngày sớm, hỏi phân xưởng cần làm bao nhiêu sản phẩm mỗi ngày? 2. Tính thể tích của một khối gỗ dạng hình trụ, khi bán kính đáy là 30cm và chiều cao là 120cm (lấy π ≈ 3,14). 3. Trong tam giác ABC có ba góc nhọn và đường tròn nội tiếp (O). Chứng minh rằng tứ giác SAOI nội tiếp và OAH bằng IAD. Tiếp tục với việc vẽ đường cao CE của tam giác ABC, gọi Q là trung điểm của đoạn BE. Chứng minh BQ.BA = BD.BI và CK song song với SO. Hãy tự tin và sẵn sàng đối mặt với những thách thức trong kỳ thi tuyển sinh sắp tới. Hãy ôn tập kỹ lưỡng và chúc quý thí sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An; đề thi được dành cho các thí sinh thi vào trường THPT chuyên Phan Bội Châu (Nghệ An) và trường THPT chuyên – trường Đại học Vinh (Nghệ An); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và đường thẳng AO cắt đường tròn (O) tại E (E khác A). a) Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. b) Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của P Q. Chứng minh rằng AN luôn đi qua một điểm cố định. + Cho 676 số nguyên tố khác nhau. Chứng minh rằng có ít nhất hai số trong các số đã cho mà hiệu của chúng chia hết cho 2022. + Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương.
Đề Toán (chuyên) thi vào 10 năm 2021 - 2022 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán (chuyên) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Trị; đề thi được dành cho thí sinh thi chuyên Toán; kỳ thi được diễn ra vào sáng thứ Năm ngày 03 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT tỉnh Đồng Nai; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tìm giá trị của tham số thực m để Parabol 2 Pyx và đường thẳng 2 3 dy x m có đúng một điểm chung. + Cho phương trình 2 x x 5 40. Gọi 1 2 x x là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị biểu thức 2 2 1 2 12 Q x x xx. + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24 km h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của bạn Mai khi đi học bằng xe đạp.