Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình đại số - Trịnh Bình

Tài liệu chuyên đề phương trình đại số gồm 56 trang được tổng hợp bởi tác giả Trịnh Bình, hướng dẫn phương pháp giải các bài toán phương trình đại số, giúp học sinh học tốt chương trình Đại số lớp 9 và ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1 . PHƯƠNG TRÌNH ĐA THỨC BẬC CAO. Để giải phương trình đa thức bậc cao chúng ta thường chuyển phương trình đó về dạng phương trình tích. Phương trình bậc 3: Thông thường để giải được phương trình bậc 3 chúng ta phải tìm được một nghiệm của phương trình, sau đó phân tích thành nhân tử và chuyển về giải phương trình bậc 2. Phương trình bậc 4: Để giải phương trình bậc 4 chúng ta thường nhẩm một nghiệm và phân tích phương trình bậc 4 thành tích của một đa thức bậc 3 và đa thức bậc nhất sau đó dùng các phương pháp để giải phương trình bậc 3 hoặc phân tích thành tích hai tam thức bậc 2, hoặc đặt ẩn phụ chuyển về giải phương trình bậc 2. + Dạng 1. Phương trình trùng phương: $a{x^4} + b{x^2} + c = 0$ $(a \ne 0).$ + Dạng 2. Phương trình có dạng: ${(x + m)^4} + {(x + n)^4} = p$ $(p > 0).$ + Dạng 3. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e$ trong đó $a + b = c + d.$ + Dạng 4. Phương trình có dạng: $\left( {a{x^2} + {b_1}x + c} \right)\left( {a{x^2} + {b_2}x + c} \right) = m{x^2}.$ + Dạng 5. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e{x^2}$ trong đó $ab = cd.$ + Dạng 6. Phương trình có dạng: ${a_1}{\left( {b{x^2} + {c_1}x + d} \right)^2}$ $ + {a_2}\left( {b{x^2} + {c_2}x + d} \right)$ $ = A{x^2}.$ + Dạng 7. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm bx + a = 0.$ + Dạng 8. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm kbx + {k^2}a = 0$ $(k > 0).$ Phương trình cao hơn bậc 4: Đối với các phương trình bậc cao hơn 4 phương pháp chung là dùng cách đưa về dạng phương trình tích hoặc đặt ẩn phụ để đưa về giải các phương trình bậc thấp hoặc với nhiều bài toán chúng ta nên lưu tâm tới việc có thể sử dụng phương pháp đánh giá để giải toán. [ads] CHỦ ĐỀ 2 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC. Bước 1: Tìm điều kiện xác định của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. Bước 3: Giải phương trình vừa nhận được. Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. Một số dạng phương trình phân thức thường gặp: + Dạng 1. Phương trình có dạng: $\frac{{{a_1}}}{{x + {b_1}}} + \frac{{{a_2}}}{{x + {b_2}}} + \ldots + \frac{{{a_n}}}{{x + {b_n}}} = A.$ + Dạng 2. Phương trình có dạng: $\frac{{{a_1}x + {b_1}}}{{x + {c_1}}} + \frac{{{a_2}x + {b_2}}}{{x + {c_2}}} + \ldots + \frac{{{a_n}x + {b_n}}}{{x + {c_n}}} = A.$ + Dạng 3. Phương trình có dạng: $\frac{{mx}}{{a{x^2} + {b_1}x + c}} + \frac{{nx}}{{a{x^2} + {b_2}x + c}} = p$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{a{x^2} + {d_1}x + c}}{{a{x^2} + {d_2}x + c}} = 0$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{px}}{{a{x^2} + dx + c}} = 0.$ Dạng 4. Phương trình có dạng: ${x^2} + {\left( {\frac{{ax}}{{x + a}}} \right)^2} = b$ với $a \ne 0$, $x \ne – a.$ Dạng 5. Sử dụng phương ph{p đ{nh gi{ để giải phương trình chứa phân thức CHỦ ĐỀ 3 . PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI. Để giải phương trình có chứa ẩn trong dấu giá trị tuyệt đối cần khử dấu giá trị tuyệt đối. Ta cần nhớ giá trị tuyệt đối của một biểu thức bằng chính nó nếu nó có giá trị không âm, bằng số đối của nó nếu nó có giá trị âm. Do đó để bỏ dấu giá trị tuyệt đối ta phải xét các giá trị làm biểu thức âm hoặc không âm.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa
Nội dung Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa Bản PDF - Nội dung bài viết Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi này bao gồm 160 trang với nội dung chi tiết và cụ thể để giúp các học sinh chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Tài liệu được chia thành các phần sau: Phần 1: BÀI TẬP THEO CHUYÊN ĐỀ - Vấn đề 1: CĂN THỨC - Vấn đề 2: HÀM SỐ VÀ ĐỒ THỊ + I. Hàm số bậc nhất + II. Hàm số bậc hai + III. Sự tương giao giữa parabol (P) và đường thẳng (d) - Vấn đề 3: PHƯƠNG TRÌNH + I. Phương trình bậc nhất + II. Phương trình bậc hai + III. Phương trình trùng phương + IV. Phương trình chứa căn thức và trị tuyệt đối + V. Phương trình chứa tham số + VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao - Vấn đề 4: HỆ PHƯƠNG TRÌNH + I. Giải hệ phương trình + II. Hệ phương trình chứa tham số - Vấn đề 5: BẤT PHƯƠNG TRÌNH - Vấn đề 6: GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HỆ THỨC LẬP PT – HPT - Vấn đề 7: HÌNH HỌC + I. Hệ thức lượng trong tam giác + II. Đường tròn + III. Hình trụ – Hình nón – Hình cầu - Vấn đề 8: BÀI TẬP TỔNG HỢP Phần 2: ĐỀ THI BÌNH DƯƠNG Phần 3: ĐỀ THI TPHCM Phần 4: ĐỀ THI CÁC TỈNH NĂM 2015 – 2016 Tài liệu này sẽ giúp học sinh ôn tập hiệu quả và tự tin chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Mong rằng thông tin trên sẽ hữu ích cho tất cả các bạn học sinh đang hướng tới mục tiêu lớn của mình.
Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào
Nội dung Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào Bản PDF - Nội dung bài viết Hướng dẫn giải bài toán bất đẳng thức ôn thi vào lớp 10 Hướng dẫn giải bài toán bất đẳng thức ôn thi vào lớp 10 Tài liệu này bao gồm 9 trang, cung cấp lời giải chi tiết cho các bài toán bất đẳng thức thường gặp trong đề thi tuyển sinh vào lớp 10. Nội dung được trình bày một cách dễ hiểu và cụ thể, giúp học sinh nắm vững kiến thức cần thiết để giải các bài toán này. Chắc chắn rằng việc sử dụng tài liệu này sẽ giúp bạn chuẩn bị tốt cho kỳ thi sắp tới!
Tài liệu ôn thi vào môn Toán Vũ Văn Bắc
Nội dung Tài liệu ôn thi vào môn Toán Vũ Văn Bắc Bản PDF - Nội dung bài viết Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Tài liệu ôn thi Toán của Vũ Văn Bắc là một nguồn tư liệu hữu ích cho các học sinh đang ôn luyện vào môn Toán. Với tổng cộng 42 trang, tài liệu bao gồm nhiều vấn đề quan trọng: 1. Rút gọn biểu thức có chứa căn: Phần này giúp học sinh nắm vững kỹ năng rút gọn biểu thức để giải các bài toán liên quan. 2. Phương trình bậc hai một ẩn: Hướng dẫn cách giải phương trình bậc hai một ẩn một cách chi tiết và dễ hiểu. 3. Hệ phương trình đại số: Bao gồm các bài toán luyện tập về hệ phương trình để học sinh có thể áp dụng vào thực tế. 4. Các bài toán về đồ thị hàm số: Phần này giúp học sinh hiểu rõ hơn về đồ thị hàm số và cách vẽ đồ thị cho từng hàm số. 5. Giải toán bằng cách lập phương trình: Hướng dẫn cách giải các bài toán phức tạp bằng cách lập phương trình đúng. 6. Các bài toán hình học tổng hợp: Bao gồm các bài toán hình học đa dạng và phức tạp để học sinh rèn luyện kỹ năng giải bài toán. 7. Một số đề toán luyện thi: Cuối cùng, tài liệu cung cấp một số đề toán luyện thi giúp học sinh tự kiểm tra kiến thức và kỹ năng của mình. Với các vấn đề đa dạng và phong phú như vậy, tài liệu ôn thi Toán Vũ Văn Bắc sẽ giúp học sinh không chỉ tự tin hơn trong việc ôn luyện môn Toán mà còn nắm vững kiến thức cần thiết để đạt được kết quả cao trong kỳ thi sắp tới.