Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho A là một tập con của tập số tự nhiên. Tập A có phần tử nhỏ nhất là 1 phần tử lớn nhất là 100 và mỗi phần tử x thuộc A x 1 luôn biểu diễn được dưới dạng x a b trong đó a b thuộc A a (có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất. Giải thích cách tìm? + Cho tam giác ABC AB AC có ba góc nhọn nội tiếp đường tròn O và có trực tâm H. Gọi D E F lần lượt là chân đường cao kẻ từ A B C của tam giác ABC. Gọi I là trung điểm cạnh BC P là giao điểm của hai đường thẳng EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là K. a) Chứng minh PB PC PE PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là Q. Chứng minh tứ giác BIQF nội tiếp. + Cho ba điểm A B C phân biệt theo thứ tự cùng nằm trên một đường thẳng. Qua điểm B kẻ đường thẳng d vuông góc với đường thẳng AC D là một điềm di động trên đường thẳng d D B. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng d tại điểm E khác D. Gọi P Q lần lượt là hình chiếu vuông góc của điểm B trên các đường thẳng AD và AE. Gọi R là giao điểm của hai đường thẳng BQ và CD S là giao điểm của hai đường thẳng BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di động trên đường thẳng d.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên)
Nội dung Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán cho năm học 2020 - 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên) được thiết kế dành cho học sinh muốn thi vào các lớp chuyên Toán. Đề bao gồm 01 trang với 05 bài toán, thời gian làm bài thi được xác định là 150 phút. Trích dẫn một số bài toán từ đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên): 1. Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. Câu hỏi đưa ra gồm các phần a, b, c liên quan đến quan hệ giữa các điểm A, M, H, I, N và chứng minh một số tính chất của tam giác ABC. 2. Đề bài thứ hai liên quan đến việc chứng minh một bất đẳng thức với điều kiện a + b + c = 1 và a, b, c là các số thực không âm. 3. Bài toán cuối cùng liên quan đến việc chia sỏi trong túi theo quy trình nhất định và đặt ra câu hỏi về khả năng tạo ra trường hợp mỗi túi có đúng 2 viên sỏi sau một số bước nhất định. Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) mang đến những thách thức và cơ hội cho các học sinh yêu thích môn Toán, giúp họ thể hiện khả năng và kiến thức của mình trong kỳ thi tuyển sinh vào lớp 10 THPT chuyên.
Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội Ngày 14 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020-2021. Đề thi gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề tuyển sinh lớp 10 môn Toán năm 2020-2021 của trường THPT chuyên ĐHSP Hà Nội được thiết kế cho mọi thí sinh dự thi vào trường chuyên. Trong đề, có những bài toán thú vị như: Hai ô tô cùng khởi hành từ A đi B trên quãng đường 120 km. Ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10 km/giờ và đến đích sớm hơn 0,4 giờ. Hãy tính vận tốc của mỗi ô tô. Bác An muốn làm cửa sổ khuôn gỗ hình nửa hình tròn phía trên và hình chữ nhật phía dưới. Hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để có diện tích lớn nhất. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) và đường kính BC. Chứng minh các mệnh đề liên quan ABCD. Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội mang đến những bài toán thú vị và thách thức cho các thí sinh dự thi. Chúc các em đạt kết quả cao!
Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2)
Nội dung Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Vào sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) là đề thi được sử dụng cho các thí sinh thi vào các lớp chuyên xã hội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2): Tính bán kính đường tròn ngoại tiếp tam giác đều ABC, biết độ dài cạnh của tam giác là √3 cm. Từ điểm A nằm ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AO cắt BC và đường tròn (O) lần lượt tại M và I. Chứng minh rằng ABOC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC) và K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh rằng MD.MK = MA.MO. Gọi E và F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB và DC. Chứng minh AF song song với ME. Xét a, b, c là các số dương thỏa mãn 2a + 2b + 2c + ab + bc + ca = 24. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2. Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) chứa những bài toán thú vị và đòi hỏi sự tư duy logic, khả năng suy luận của học sinh. Hãy tập trung và cố gắng làm thật tốt để đạt kết quả cao trong kỳ thi tuyển sinh vào lớp 10 chuyên.
Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1)
Nội dung Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1) Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1) Ngày 09 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) là đề thi chung được sử dụng cho tất cả các thí sinh tham dự kỳ thi. Bài thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề thi: 1. Phương trình x^2 – (m + 1)x + 2m – 2 = 0 có nghiệm với mọi giá trị của tham số m không? Tìm tất cả các giá trị của m để phương trình có hai nghiệm dương phân biệt thỏa mãn điều kiện √(x1 + 2) – √(x2 + 2) = 1. 2. Chứng minh rằng tam giác ABC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. Tìm góc giữa DM và EF. 3. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + 3m cắt parabol y = x^2 tại hai điểm phân biệt. Đây là một bài thi đầy thách thức đối với các thí sinh, đòi hỏi sự tư duy logic, kiến thức sâu rộng và khả năng giải quyết vấn đề. Hy vọng các thí sinh đã có một kỳ thi tốt và đạt kết quả cao!