Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 1 năm 2023 - 2024 trường THPT Gia Bình 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng môn Toán 10 lần 1 năm học 2023 – 2024 trường THPT Gia Bình số 1, tỉnh Bắc Ninh; đề thi gồm 04 trang, hình thức 50% trắc nghiệm + 50% tự luận, trong đó phần trắc nghiệm gồm 20 câu, phần tự luận gồm 04 câu, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 10 lần 1 năm 2023 – 2024 trường THPT Gia Bình 1 – Bắc Ninh : + Xét hệ tọa độ Oth trên mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0;0;2) và chuyển động theo quỹ đạo là một cung parabol có bề lõm quay xuống dưới. Quả bóng đạt độ cao 8,5m sau 1 giây và đạt độ cao 6m sau 2 giây. Hỏi bắt đầu từ giây thứ mấy sau đây thì quả bóng chạm đất? + Nhân dịp sắp đến Tết Giáp Thìn 2024, tổ Toán Tin trường THPT Gia Bình số 1 dự định gói bánh chưng và bánh tét (loại bánh chưng dài). Tổ dự kiến sử dụng tối đa 20 kg gạo nếp, 2kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh tét. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh tét cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg gạo xanh. Số bánh chưng và bánh tét gói được sẽ chia về các gia đình thầy cô với giá mỗi cái bánh chưng là 30 nghìn đồng và mỗi cái bánh tét là 40 nghìn đồng. Tính số lượng bánh mỗi loại cần gói để tổ Toán Tin thu được nhiều tiền nhất. A. 30 cái bánh chưng và 10 cái bánh tét. B. 40 cái bánh chưng và 0 cái bánh tét. C. 35 cái bánh tét và 0 cái bánh chưng. D. 35 cái bánh chưng và 5 cái bánh tét. + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lượt vào kinh doanh xe Honda Vison với chi phí mua vào 1 chiếc là 27 triệu đồng và bán ra là 31 triệu đồng. Với giá này thì số lượng xe mà khách hàng sẽ mua trong 1 năm là 600 chiếc. Nhằm mục đích đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc thì số lượng xe bán ra trong 1 năm sẽ tăng thêm 200 chiếc. Giả sử giảm giá x (triệu đồng) một cái so với giá bán 31 triệu đồng. Hãy tìm hàm số bậc hai biểu thị lợi nhuận doanh nghiệp thu được trong một năm?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 10 lần 3 năm 2019 - 2020 trường THPT Yên Lạc - Vĩnh Phúc
Ngày … tháng 06 năm 2020, trường THPT Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba. Đề khảo sát Toán 10 lần 3 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc gồm 50 câu trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 101 và mã đề 102. Trích dẫn đề khảo sát Toán 10 lần 3 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc : + Cho đường tròn lượng giác tâm O, gốc A. Gọi αlà số đo cung lượng giác AM và S là tập hợp các điểm M sao cho sin 3α = 0, β là số đo cung lượng giác AN và T là tập hợp các điểm N sao cos 3β = 1. Tìm số phần tử của tập hợp S\T? + Lúc 12 giờ, kim giờ và kim phút của một chiếc đồng hồ trùng nhau. Hỏi từ lúc đó đến khi hai kim vuông góc nhau lần đầu tiên, kim phút quay được một góc lượng giác bao nhiêu radian? [ads] + Cho tam giác ABC đều, cạnh a, trọng tâm G. I là trung điểm CG, J là trung điểm AB. Tập các điểm M sao cho |MA + MB + 4MC| = 6a là: A. đường tròn (G;2a). B. đường tròn (C;a). C. đường tròn (I;a). D. đường tròn (J;2a).
Đề kiểm định chất lượng Toán 10 lần 2 năm 2019 - 2020 trường THPT Yên Phong 2 - Bắc Ninh
Ngày … tháng 06 năm 2020, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 10 năm 2019 – 2020 lần thứ hai. Đề kiểm định chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm định chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho ∆ABC có A(3;0), B(-2;1), C(4;1). a) Viết phương trình tổng quát của đường cao AH của ∆ABC. b) Viết phương trình đường tròn tâm B và tiếp xúc với AC. c) Tìm tọa độ điểm M thuộc cạnh BC sao cho S∆ABC  = 3/2S∆MAB. [ads] + Chứng minh rằng ∆ABC cân nếu asin(B – C) + bsin(C – A) = 0. + Chứng minh rằng (2tanx – sin2x)/[(sinx + cosx)^2 – 1] = (tanx)^2.
Đề khảo sát Toán 10 lần 2 năm 2019 - 2020 trường THPT Lý Thường Kiệt - Bắc Ninh
Ngày … tháng 05 năm 2020, trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 10 lần thứ hai năm học 2019 – 2020. Đề khảo sát Toán 10 lần 2 năm học 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh mã đề 132 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Ma trận đề khảo sát Toán 10 lần 2 năm 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh:Chủ đềNhận biếtThông hiểuVận dụngVận dụng caoTổng1. Mệnh đề và tập hợp210032. Hàm số bậc nhất và bậc hai4322113. Phương trình bậc nhất và bậc hai5241124. Hệ phương trình – hệ phương trình – bất phương trình5421125. Hệ thức lượng trong tam giác221166. Phương trình đường thẳng32106Tổng423150
Đề thi KSCL Toán 10 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 066 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho hai điểm B và C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 thuộc: A. Một đường khác không phải đường tròn. B. Đường tròn (B;BC). C. Đường tròn (C;BC). D. Đường tròn đường kính BC. + Cho hai bất phương trình x^2 – m(m^2 + 1)x + m^4 < 0 (1) và x^2 + 4x + 3 > 0 (2). Các giá trị của tham số m sao cho nghiệm của bất phương trình (1) đều là nghiệm của bất phương trình (2) là? + Cho hệ phương trình: 2x – y = 2 – a và x + 2y = a + 1. Các giá trị thích hợp của tham số a để tổng bình phương hai nghiệm của hệ phương trình đạt giá trị nhỏ nhất? + Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng? + Gọi H là trực tâm tam giác ABC, phương trình các đường thẳng chứa các cạnh và đường cao tam giác là: AB: 7x – y + 4 = 0; BH: 2x + y – 4 = 0; AH: x – y -2 = 0. Phương trình đường thẳng chứa đường cao CH của tam giác ABC là?