Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập học kì 1 môn Toán 8

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập học kì 1 môn Toán 8, đề cương gồm có 25 trang được sưu tầm và tổng hợp bởi tác giả Toán Họa, tóm tắt lý thuyết, phân dạng toán và chọn lọc các bài tập Toán 8 giúp học sinh tự rèn luyện, để chuẩn bị cho kỳ thi kiểm tra chất lượng cuối học kì 1 môn Toán 8 sắp tới. Khái quát nội dung đề cương ôn tập học kì 1 môn Toán 8: PHẦN A – ĐẠI SỐ I. LÝ THUYẾT 1) Nắm vững các quy tắc nhân, chia đơn thức với đơn thức, đơn thức với đa thức, phép chia hai đa thức một biến. 2) Nắm vững và vận dụng được các hằng đẳng thức đáng nhớ – các phương pháp phân tích đa thức thành nhân tử. 3) Nắm vững và vận dụng tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Thực hiện các phép tính về cộng, trừ, nhân, chia các phân thức đại số. II. BÀI TẬP + Dạng toán 1. Thực hiện phép tính (tính toán và rút gọn). + Dạng toán 2. Toán về phép chia đa thức. + Dạng toán 3. Phân tích đa thức thành nhân tử: Phương pháp đặt nhân tử chung, Phương pháp dùng hằng đẳng thức, Phương pháp nhóm hạng tử, Phương pháp tách hạng tử, Phương pháp thêm bớt hạng tử. + Dạng toán 4. Toán tìm x. + Dạng toán 5. Các bài toán tổng hợp. Bổ sung: Một số dạng toán dành cho học sinh khá – giỏi. [ads] PHẦN B – HÌNH HỌC I. LÝ THUYẾT 1) Nắm vững định nghĩa, tính chất, dấu hiệu nhận biết các tứ giác đã học: Hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. 2) Nắm vững các tính chất đường trung bình của tam giác, đường trung bình của hình thang. 3) Nắm vững điểm đối xứng qua một đường thẳng, điểm đối xứng qua một điểm, hình đối xứng qua một điểm, hình đối xứng qua một đường thẳng, hình có trục đối xứng, hình có tâm đối xứng. 5) Nắm vững định lý về đường trung tuyến của tam giác vuông. 6) Áp dụng công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông, tam giác thường. II. BÀI TẬP MỘT SỐ ĐỀ THI THAM KHẢO: Tuyển chọn 15 đề thi HK1 Toán 8 chất lượng, giúp học sinh tự rèn luyện.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mở đầu về phương trình
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề mở đầu về phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN 1. Phương trình một ẩn. 2. Giải phương trình. 3. Phương trình tương đương. B. BÀI TẬP MINH HỌA CƠ BẢN Dạng toán 1: Giải phương trình. Dạng toán 2: Hai phương trình tương đương. C. BÀI TẬP NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Biến đổi các biểu thức hữu tỉ. + Biểu thức hữu tỉ là một phân thức hoặc biểu thị một dãy các phép toán: cộng, trừ, nhân chia trên những phân thức. + Biến đổi một hiểu thức hữu tỉ thành một phân thức nhờ các quy tắc của phép toán cộng, trừ, nhân, chia các phân thức đã học. 2. Giá trị của phân thức. + Giá trị của một phân thức chỉ đuợc xác định với điều kiện giá trị của mẫu thức khác 0. + Chú ý: Biểu thức hữu tỉ có hai biến x và y thì giá trị của biểu thức đó chi đuợc xác định với các cặp số (x;y) làm cho giá trị của mẫu thức khác 0. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm điều kiện xác định của phân thức. Ta xác định các giá trị của biến để mẫu thức khác 0. Dạng 2 : Biến đổi biểu thức hữu tỷ thành phân thức. + Bước 1. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. + Bước 2. Biến đổi cho tới khi được một phân thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 3 : Thực hiện phép tính với các biểu thức hữu tỷ. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. Dạng 4 : Tìm x để giá trị của một phân thức đã cho thỏa mãn điều kiện cho trước. Ta sử dụng các kiến thức sau: + A/B > 0 khi và chỉ khi A và B cùng dấu. + A/B < 0 khi và chỉ khi A và B trái dấu. + Hằng đẳng thức đáng nhớ và chú ý a^2 >= 0 với mọi giá trị của a. + Với a; b thuộc Z và b khác 0 ta có: a/b thuộc Z khi và chỉ khi b thuộc Ư(a).
Chuyên đề phép chia các phân thức đại số
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép chia các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Sử dụng quy tắc chia để thực hiện phép tính. Phương pháp giải: Áp dụng công thức: A/B : C/D = A/B . D/C với C/D ≠ 0. Chú ý: + Đối với phép chia có nhiều hơn hai phân thức, ta vẫn nhân với nghịch đảo của các phân thức đứng sau dấu chia theo thứ tự từ trái sang phải. + Ưu tiên tính toán đối vói biểu thức trong dấu ngoặc trước (nếu có). Dạng 2 . Tìm phân thức thỏa mãn đẳng thức cho trước. + Bước 1. Đưa phân thức cần tìm về riêng một vế. + Bước 2. Sử dụng quy tắc nhân và chia các phân thức đại số, từ đó suy ra phân thức cần tìm. Dạng 3 . Bài toán nâng cao.
Chuyên đề phép nhân các phân thức đại số
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép nhân các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Sử dụng quy tắc nhân để thực hiện phép tính. Vận dụng quy tắc đã nêu trong phần tóm tắt lý thuyết để thực hiện yêu cầu của bài toán. Dạng 2 . Tính toán sử dụng kết hợp các quy tắc đã học. Sử dụng hợp lý ba quy tắc đã học: quy tắc cộng, quy tắc trừ và quy tắc nhân để tính toán. Chú ý: + Đối với phép nhân có nhiều hơn hai phân thức, ta vẫn nhân các tử thức với nhau và các mẫu thức với nhau. + Ưu tiên tính toán đối với biểu thức trong dấu ngoặc trước (nếu có).