Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử HSG lần 1 lớp 12 môn Toán năm 2019 2020 trường Lý Thái Tổ Bắc Ninh

Nội dung Đề thi thử HSG lần 1 lớp 12 môn Toán năm 2019 2020 trường Lý Thái Tổ Bắc Ninh Bản PDF Ngày …/10/2019, trường THPT Lý Thái Tổ, tỉnh Bắc Ninh tổ chức kỳ thi thử học sinh giỏi lần 1 môn Toán lớp 12 năm học 2019 – 2020, nhằm kiểm tra và nâng cao chất lượng đội tuyển học sinh giỏi Toán lớp 12 của nhà trường. Đề thi thử HSG lần 1 Toán lớp 12 năm 2019 – 2020 trường Lý Thái Tổ – Bắc Ninh có mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không tính thời gian phát đề), đề thi gồm có 07 trang, có đáp án. Trích dẫn đề thi thử HSG lần 1 Toán lớp 12 năm 2019 – 2020 trường Lý Thái Tổ – Bắc Ninh : + Cho hàm số f(x) = √(x – x^2) xác định trên tập D = [0;1]. Mệnh đề nào dưới đây đúng? A. Hàm số f(x) có giá trị lớn nhất và có giá trị nhỏ nhất trên D. B. Hàm số f(x) có giá trị lớn nhất và không có giá trị nhỏ nhất trên D. C. Hàm số f(x) có giá trị nhỏ nhất và không có giá trị lớn nhất trên D. D. Hàm số f(x) không có giá trị lớn nhất và giá trị nhỏ nhất trên D. + Có một khối gỗ dạng hình chóp O.ABC có OA, OB, OC đôi một vuông góc với nhau, OA = 3cm, OB = 6cm, OC = 12cm. Trên mặt ABC người ta đánh dấu một điểm M sau đó người ta cắt gọt khối gỗ để thu được một hình hộp chữ nhật có OM là một đường chéo đồng thời hình hộp có 3 mặt nằm trên 3 mặt của tứ diện (xem hình vẽ). Thể tích lớn nhất của khối gỗ hình hộp chữ nhật bằng? + Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10), P(100;0). Gọi S là tập hợp tất cả các điểm A(x;y) với x, y ∈ R nằm bên trong (kể cả trên cạnh) của hình chữ nhật OMNP. Lấy ngẫu nhiên một điểm A(x;y) ∈ S. Tính xác suất để x + y ≤ 90.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Yên Bái
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Yên Bái Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đạo tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 30/09/2022 (ngày thi thứ nhất) và 01/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho tam giác ABC nhọn, không cân, có đường cao BE, CF cắt nhau tại H. Đường thẳng qua C song song với AB cắt BE tại M, đường thẳng qua B song song với AC cắt CF tại N. Điểm D là hình chiếu của H trên MN, I là trung điểm của BC. 1) Chứng minh AH, DI, EF đồng quy. 2) Gọi J là trung điểm của AH. Đường thẳng IJ cắt BE, CF lần lượt tại U, V. Đường tròn ngoại tiếp tam giác HUV và đường tròn ngoại tiếp tam giác AEF cắt nhau tại điểm T khác H. Chứng minh ba điểm A, T, I thẳng hàng. + Cho số nguyên dương n và số nguyên tố lẻ p. Biết p là ước của 3^2^n + 1, chứng minh p – 1 chia hết cho 2^(n + 1). + Cho 2n điểm phân biệt trong không gian (với n >= 2) sao cho trong chúng không có ba điểm nào thẳng hàng và không có bốn điểm nào cùng nằm trên một mặt phẳng. Xét n2 + 1 đoạn thẳng bất kì, mỗi đoạn có hai đầu mút là hai trong số 2n điểm trên. Chứng minh rằng có ít nhất một tam giác được tạo thành từ n2 + 1 đoạn thẳng trên.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Yên Bái
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Yên Bái Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho hàm số y = (2x + 3)/(x + 3) có đồ thị (C) và đường thẳng d: y = -2x + m (m là tham số thực). Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi tham số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm tất cả các giá trị của m để P = (k1)^2022 + (k2)^2022 đạt giá trị nhỏ nhất. + Cho đa giác (H) có 20 đỉnh nội tiếp một đường tròn. Chọn bốn đỉnh tùy ý của (H). Tính xác suất để chọn được bốn đỉnh tạo thành một tứ giác lồi có bốn cạnh đều là đường chéo của (H). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy. Góc giữa SC và mặt phẳng (SAB) bằng 30°. Gọi M, N lần lượt là các điểm thuộc cạnh BC, CD sao cho BM = 2MC và CN = 2ND. 1) Tính thể tích khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng DM và SN.
Đề học sinh giỏi lớp 12 môn Toán lần 1 năm 2022 2023 cụm liên trường THPT Nghệ An
Nội dung Đề học sinh giỏi lớp 12 môn Toán lần 1 năm 2022 2023 cụm liên trường THPT Nghệ An Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 12 lần 1 năm học 2022 – 2023 cụm thi liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán lớp 12 lần 1 năm 2022 – 2023 cụm liên trường THPT – Nghệ An : + Trong tiết học môn thể dục, giáo viên cho 20 học sinh đứng thành một vòng tròn để truyền đạt kiến thức, sau đó giáo viên gọi ngẫu nhiên bốn học sinh lên làm mẫu. Tính xác suất để trong bốn học sinh được gọi không có hai học sinh đứng cạnh nhau. + Một người thợ gò hàn làm một cái thùng đựng nước dạng hình hộp chữ nhật có nắp bằng tôn. Biết rằng đường chéo hình hộp bằng 6dm và chỉ được sử dụng vừa đủ 36dm2 tôn. Tính thể tích lớn nhất của cái thùng. + Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân tại A và BAC = a. Gọi M là trung điểm của AA’, mặt phẳng (C’MB) tạo với đáy (ABC) góc b. Xác định hệ thức giữa a và b để tam giác C’MB là tam giác vuông.