Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nội

Sáng thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đáp án và lời giải chi tiết của đề thi sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). + Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 năm 2019 - 2020 môn Toán sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Ngãi, đề thi gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài 90 phút, kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2019, đề thi có hướng dẫn làm bài. Trích dẫn đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Ngãi : + Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau. + Cho tam giác nhọn ABC (AB < AC), đường cao AH, nội tiếp đường tròn (O). Gọi D và E thứ tự là hình chiếu vuông góc của H lên AB và AC. a) Chứng minh các tứ giác AEHD và BDEC nội tiếp được đường tròn. b) Vẽ đường kính AF của đường tròn (O). Chứng minh BC = √(AB.BD) + √(AC.CE) và AF vuông góc với DE. c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác BDE. Chứng minh O’ là trung điểm của HF. d) Tính bán kính đường trò (O’) biết BC = 8cm, DE = 6cm, AF = 10cm. + Cho hình vuông ABCD. Gọi S1 là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. S2 là diện tích phần còn lại của hình vuông nằm ngoài hai nửa đường trong nói trên (như hình vẽ bên).Tính S1/S2.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2019 - 2020 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2019; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh, kỳ thi nhằm tuyển chọn các em học sinh đáp ứng điều kiện về học lực vào học tại các trường THPT trên địa bàn tỉnh Bắc Ninh, đề thi được biên soạn theo dạng kết hợp trắc nghiệm và tự luận, phần trắc nghiệm gồm 6 câu, phần tự luận gồm 4 câu, thời gian làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Cho đường tròn (O), hai điểm A, B nằm trên (O) sao cho góc AOB = 90°. Điểm C nằm trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI, BK của tam giác ABC cắt nhau tại điểm H. BK cắt (O) tại điểm N (khác điểm B); AI cắt (O) tại điểm M (khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng: a) Tứ giác CIHK nội tiếp một đường tròn. b) MN là đường kính của đường tròn (O). c) OC song song với DH. [ads] + Cho phương trình x^2 – 2mx – 2m – 1 = 0 (1) với m là tham số. Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho √(x1 + x2) + √(3 + x1x2) = 2m + 1. + Cho hai số thực không âm a, b thỏa mãn a^2 + b^2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức M = (a^3 + b^3 + 4)/(ab + 1).
Đề Toán tuyển sinh lớp 10 năm học 2019 2020 sở GDĐT Hà Nội (chuyên Toán)
Ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020, kỳ thi dành cho các thí sinh dự thi vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán, thời gian học sinh làm bài là 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán) : + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). [ads] 1) Chứng minh MI^2 = MJ.MA. 2) Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. 3) Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Mỗi điểm trong một mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. 1) Chứng minh trong mặt phẳng đó tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. 2) Gọi tam giác có ba đỉnh được tô đi cùng một màu là tam giác đơn sắc. Chứng minh trong mặt phẳng đó tồn tại hai tam giác đơn sắc là hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019.