Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường kính và dây cung của đường tròn

Nội dung Chuyên đề đường kính và dây cung của đường tròn Bản PDF - Nội dung bài viết Tài liệu Chuyên đề đường kính và dây cung của đường trònTóm tắt lý thuyếtCác dạng bài tập tự luận minh họaTrắc nghiệm rèn luyện phản xạ Tài liệu Chuyên đề đường kính và dây cung của đường tròn Trong tài liệu này, tác giả Toán Học Sơ Đồ đã biên soạn 29 trang với mục đích tổng hợp kiến thức quan trọng về đường kính và dây cung của đường tròn, cung cấp phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề này. Đây là tài liệu hữu ích hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 2 và bài số 3. Tóm tắt lý thuyết Trong đường tròn, đường kính là dây lớn nhất. Quan hệ giữa đường kính và dây: + Đường kính vuông góc với dây khi đi qua trung điểm của dây. + Đường kính đi qua trung điểm của dây không đi qua tâm thì cũng vuông góc với dây đó. Khoảng cách từ tâm đến dây: + Hai dây bằng nhau thì cách đều tâm. + Hai dây cách đều tâm thì cũng bằng nhau. Trong hai dây của đường tròn: + Dây lớn hơn thì gần tâm hơn. + Dây gần tâm hơn thì lớn hơn. Các dạng bài tập tự luận minh họa Trong tài liệu, có các dạng bài tập như: Dạng 1: Tính toán trong đường tròn. Dạng 2: Chứng minh hai đoạn thẳng không bằng nhau. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. Trắc nghiệm rèn luyện phản xạ Bên cạnh các bài tập tự luận, tài liệu còn cung cấp phiếu bài tự luyện để rèn luyện kỹ năng phản xạ của học sinh. Đây là tài liệu đầy đủ, dễ hiểu và hữu ích để giúp học sinh nắm vững kiến thức về đường kính và dây cung của đường tròn, từ đó cải thiện kết quả học tập của mình trong môn Hình học.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Tài liệu gồm 26 trang hướng dẫn giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán 9. Phương pháp giải chung : Bước 1. Lập phương trình hoặc hệ phương trình + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị) + Dựa vào dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình Bước 2. Giải phương trình hoặc hệ phương trình Bước 3. Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời (bằng câu viết) nêu rõ đơn vị của đáp số Các dạng toán cơ bản : + Dạng toán chuyển động + Dạng toán liên quan đến các kiến thức hình học + Dạng toán công việc làm chung, làm riêng + Dạng toán chảy chung, chảy riêng của vòi nước + Dạng toán tìm số + Dạng toán sử dụng các kiến thức về % + Dạng toán sử dụng các kiến thức vật lý, hóa học [ads] Các công thức cần lưu ý khi giải bài toán bằng cách lập phương trình, hệ phương trình : + Thời gian t, quãng đường s, vận tốc v: s = v.t, v = s/t, t = s/v + Chuyển động của tàu thuyền khi có tác động dòng nước: V xuôi dòng = V thực + V dòng nước V ngược dòng = V thực – V dòng nước + Khối lượng công việc A, năng suất lao động N, thời gian làm việc T: A = N.T
Các dạng toán căn bậc ba - Nguyễn Chí Thành
Tài liệu gồm 17 trang tuyển tập các bài toán về chủ đề căn bậc 3  (Chương trình Toán 9 – Tập 1) được giải chi tiết. Các dạng toán gồm có: + Dạng 1. Thực hiện phép tính + Dạng 2. Chứng minh đẳng thức + Dạng 3. So sánh hai căn bậc 3 + Dạng 4. Giải phương trình
Chinh phục Toán 9 bằng sơ đồ tư duy - Phạm Nguyên (Đại số - Tập 2)
Nội dung sách được trình bày theo từng dạng toán. Mỗi bài gồm các phần: A. Tóm tắt kiến thức cần học B. Phương pháp giải các dạng toán Các nội dung chính trong sách: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn 1. Phương trình bậc nhất hai ẩn 2. Hệ hai phương trình bậc nhất hai ẩn 3. Giải hệ phương trình bậc nhất hai ẩn 4. Giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn [ads] + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn 1. Hàm số y = ax^2 2. Phương trình bậc hai một ẩn 3. Phương trình quy về phương trình bậc hai 4. Giải toán bằng cách lập phương trình
Chinh phục Toán 9 bằng sơ đồ tư duy - Phạm Nguyên (Đại số - Tập 1)
Nội dung sách được trình bày theo từng dạng toán. Mỗi bài gồm các phần: A. Tóm tắt kiến thức cần học B. Phương pháp giải các dạng toán Các nội dung chính trong sách: + Chương 1. Căn thức 1. Căn bậc hai – Căn thức bậc hai 2. Liên hệ giữa phép khai phương và phép nhân, phép chia [ads] 3. Biến đổi đơn giản biểu thức chứa căn thức bậc hai 4. Rút gọn biểu thức chứa căn thức bậc hai 5. Căn bậc 3 + Chương 2. Hàm số bậc nhất 1. Khái niệm hàm số 2. Hàm số bậc nhất