Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Hà Đông Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Hà Đông Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2019-2020 phòng GD ĐT Hà Đông Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán năm 2019-2020 phòng GD ĐT Hà Đông Hà Nội Thứ Tư ngày 10 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2019-2020. Đề khảo sát chất lượng Toán lớp 9 năm 2019-2020 phòng GD&ĐT Hà Đông - Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Học sinh được cấp 120 phút để hoàn thành bài thi, đề thi đi kèm với đáp số và lời giải chi tiết. Trích dẫn từ đề khảo sát chất lượng Toán lớp 9 năm 2019-2020 phòng GD&ĐT Hà Đông - Hà Nội: Khi uống trà sữa, người ta thường dùng ống hút bằng nhựa hình trụ có đường kính đáy 0,9cm, độ dài trục 21cm. Hỏi khi thải ra ngoài môi trường, diện tích nhựa gây ô nhiễm môi trường do 1000 ống hút gây ra là bao nhiêu? Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người mua một cái bàn là và một cái quạt điện với tổng số tiền theo giá niêm yết là 850 nghìn đồng. Khi trả tiền người đó được khuyến mại giảm 20% đối với giá tiền bàn là và 10% đối với giá tiền quạt điện so với giá niêm yết. Vì vậy, người đó phải trả tổng cộng 740 nghìn đồng. Tính giá tiền của cái bàn là và cái quạt điện theo giá niêm yết. Cho phương trình \(x^4 - 2mx^2 + m^2 - 4 = 0\). a) Giải phương trình với m = 3. b) Tìm m để phương trình có 3 nghiệm phân biệt.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lớp 9 môn Toán lần 2 năm 2021 2022 phòng GD ĐT thành phố Bắc Ninh
Nội dung Đề khảo sát lớp 9 môn Toán lần 2 năm 2021 2022 phòng GD ĐT thành phố Bắc Ninh Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 phòng GD&ĐT thành phố Bắc Ninh Đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 phòng GD&ĐT thành phố Bắc Ninh Đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 phòng GD&ĐT thành phố Bắc Ninh bao gồm 40 câu trắc nghiệm trải qua 04 trang, thời gian làm bài là 50 phút. Dưới đây là một số ví dụ câu hỏi trong đề khảo sát: + Cho tam giác ABC vuông tại A, đường cao AH có độ dài AC cm và BC cm là 4 và 5. Hỏi độ dài cạnh AB là bao nhiêu? + Trong tam giác ABC vuông tại A, đường cao AH, với AB cm và BH cm lần lượt là 6 và 4. Biết cạnh BC bằng bao nhiêu? + Biết ABC là tam giác vuông tại A, với đường cao AH, diện tích ABH và ACH lần lượt là 54cm và 96cm. Tính độ dài BC. + Tại tam giác ABC vuông tại A, AB/AC = 3/4 và đường cao AH có độ dài 9cm. Hỏi đoạn thẳng HC bằng bao nhiêu? + Cho P(x) = x^2 - x + 1. Tìm giá trị nhỏ nhất của biểu thức P(2022x). Đây chỉ là một số câu hỏi trong đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 của phòng GD&ĐT thành phố Bắc Ninh. Hy vọng các em học sinh sẽ làm tốt và đạt kết quả cao trong bài kiểm tra này. Chúc các em may mắn!
Đề khảo sát lớp 9 môn Toán tháng 10 năm học 2021 2022 trường THCS Nam Từ Liêm Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán tháng 10 năm học 2021 2022 trường THCS Nam Từ Liêm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 tháng 10 năm học 2021 - 2022 trường THCS Nam Từ Liêm - Hà Nội Đề khảo sát Toán lớp 9 tháng 10 năm học 2021 - 2022 trường THCS Nam Từ Liêm - Hà Nội Đề khảo sát Toán lớp 9 tháng 10 năm học 2021 - 2022 tại trường THCS Nam Từ Liêm - Hà Nội bao gồm một trang cung cấp 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Đề khảo sát này yêu cầu học sinh giải các phương trình, tính giá trị của biểu thức, rút gọn biểu thức, tìm các số nguyên thỏa mãn điều kiện. Ngoài ra, đề cũng liên quan đến tam giác ABC vuông tại A, cung cấp các thông tin về đoạn thẳng, góc và các đường cao, đường trung tuyến trong tam giác. Bằng cách thực hiện các phép tính, kế hoạch rõ ràng và sử dụng kiến thức toán học cơ bản, học sinh sẽ có cơ hội thể hiện năng lực và hiểu biết của mình trong môn Toán.
Đề kiểm tra lớp 9 môn Toán tháng 10 năm 2021 trường THCS Archimedes Academy Hà Nội
Nội dung Đề kiểm tra lớp 9 môn Toán tháng 10 năm 2021 trường THCS Archimedes Academy Hà Nội Bản PDF - Nội dung bài viết Đề thi kiểm tra Toán lớp 9 - Tháng 10 năm 2021 - THCS Archimedes Academy - Hà Nội Đề thi kiểm tra Toán lớp 9 - Tháng 10 năm 2021 - THCS Archimedes Academy - Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Để giúp các em chuẩn bị tốt cho kỳ thi sắp tới, Sytu xin giới thiệu đến mọi người đề kiểm tra Toán lớp 9 tháng 10 năm 2021 tại trường THCS Archimedes Academy - Hà Nội. Đề thi được biên soạn theo hình thức 100% tự luận, gồm 05 bài toán trên 01 trang giấy. Thời gian làm bài là 90 phút. Đề thi sẽ giúp các em ôn tập và củng cố kiến thức Toán một cách hiệu quả, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và thành công trong kỳ thi sắp tới!
Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 trường THCS THPT Newton Hà Nội
Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 trường THCS THPT Newton Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 trường THCS THPT Newton Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 trường THCS THPT Newton Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm học 2021-2022 tại trường THCS&THPT Newton Hà Nội bao gồm một trang đề với năm bài toán dạng tự luận, thời gian làm bài là 90 phút. Trích dẫn đề khảo sát chất lượng môn Toán lớp 9 năm 2021-2022 tại trường THCS&THPT Newton Hà Nội: + Cho hai biểu thức A và B Tính giá trị biểu thức A khi x = 25. Chứng minh B. Tìm x để B < $\frac{3}{4}$. Cho P = A : B. Với giá trị nguyên nào của x thì P đạt giá trị nhỏ nhất, xác định giá trị nhỏ nhất đó. + Đài kiểm soát không lưu Nội Bài cao 95m. Ở một thời điểm nào đó vào ban ngày, mặt trời chiếu tạo bóng của Đài kiểm soát dài 200m trên mặt đất. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu? (Kết quả làm tròn đến độ). + Cho tam giác ABC vuông tại A, đường cao AH. Giả sử BH = 4cm; AB = 6cm. Xác định tâm và bán kính của đường tròn ngoại tiếp ABC. Qua B kẻ đường thẳng vuông góc với AB, cắt AH tại D. Chứng minh: Lấy một điểm O bất kì trong tam giác ABC, gọi M, N, P lần lượt là hình chiếu của điểm O trên cạnh BC, CA và AB. Hãy xác định vị trí điểm O để đạt giá trị nhỏ nhất.