Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ thuật chọn hàm trong các bài toán tích phân từ NB - TH đến VD - VDC

Tài liệu gồm 17 trang, được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, trình bày kĩ thuật chọn hàm trong các bài toán tích phân từ nhận biết – thông hiểu đến vận dụng – vận dụng cao; đây là một kĩ thuật giải nhanh trắc nghiệm rất hay, giúp đưa một bài toán tích phân khó về một bài toán chọn hàm đơn giản, rút ngắn được thời gian giải toán; giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán. Dạng toán 1. Hàm hằng. Dạng toán 2. Hàm bậc nhất. Dạng toán 3. Hàm bậc hai. Dạng toán 4. Hàm chẵn. + Dạng 4.1. Hàm chẵn một giả thiết. + Dạng 4.2. Hàm chẵn hai giả thiết. Dạng toán 5. Hàm lẻ. + Dạng 5.1. Hàm lẻ một giả thiết. + Dạng 5.2. Hàm lẻ hai giả thiết. [ads] Dạng toán 6. Hàm tuần hoàn với chu kì T một giả thiết Dạng toán 7. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 8. Hàm tuần hoàn với chu kì T và là hàm chẵn một giả thiết. Dạng toán 9. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 10. Với bài toán có giả thiết như sau: $f(x) = f(a + b – x)$, $\int_b^a f (x)dx = c.$ Dạng toán 11. Với bài toán có giả thiết như sau: $f(x).f(a + b – x) = g(x) > 0.$ Dạng toán 12. Với bài toán có giả thiết như sau: $\int_a^b {(f(} x){)^2}dx = \alpha $, $\int_a^b f (x).g(x)dx = \beta .$ Phụ lục: Một số thủ thuật giải nhanh các dạng toán tích phân. Xem thêm : Bài toán logarit qua nhiều góc nhìn (Tài liệu cùng tác giả).

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải tích phân vận dụng cao trong đề thi THPTQG 2018
Tài liệu gồm 43 tuyển tập 120 câu trắc nghiệm tích phân vận dụng cao có lời giải chi tiết được trích từ các đề thi thử môn Toán năm 2018. Các bài toán được chia thành 13 vấn đề: + Vấn đề 1. Tính tích phân theo định nghĩa + Vấn đề 2. Kỹ thuật đổi biến + Vấn đề 3. Kỹ thuật tích phân từng phần + Vấn đề 4. Tính a, b, c trong tích phân + Vấn đề 5. Tính tích phân hàm phân nhánh + Vấn đề 6. Tính tích phân dựa vào tính chất + Vấn đề 7. Kỹ thuật phương trình hàm + Vấn đề 8. Kỹ thuật biến đổi + Vấn đề 9. Kỹ thuật đạo hàm đúng + Vấn đề 10. Kỹ thuật đưa về bình phương loại 1 + Vấn đề 11. Kỹ thuật đưa về bình phương loại 2 – Kỹ thuật Holder + Vấn đề 12. Kỹ thuật đánh giá AM – GM + Vấn đề 13. Tìm GTLN-GTNN của tích phân
Tuyển tập câu hỏi trắc nghiệm nguyên hàm - tích phân dùng Casio
Tài liệu gồm 62 trang hướng dẫn giải nhanh các bài toán trắc nghiệm nguyên hàm – tích phân bằng máy tính Casio, tài liệu do các thầy, cô giáo trong nhóm nhóm Casio – Latex biên tập. 1. Nguyên hàm các hàm hữu tỉ – Thầy Lê Anh Dũng a. Phương pháp bấm máy b. Các ví dụ 2. Nguyên hàm các hàm hữu tỉ – Thầy Dương Bùi Đức a. Cơ sở lí thuyết giải nguyên hàm hữu tỷ b. Thực hiện phép chia đa thức – Sử dụng máy tính Vinacal 570 es plus II 3. Nguyên hàm dạng tìm hệ số C – Thầy Phan Minh Tâm 4. Nguyên hàm dạng cho f(x) và F(a). Tính F(b) [ads] 5. Tích phân dạng đặc biệt – Thầy Huỳnh Văn Quy 6. Tích phân hàm hữu tỉ – Thầy Triệu Minh Hà 7. Tích phân của hàm lượng giác – Thầy Nguyễn Hữu Nhanh Tiến 8. Đổi biến chứa e^x – Thầy Nguyễn Vân Trường 9. Tích Phân Casio liên quan đến lnx – Thầy Nguyễn Tài Tuệ 10. Tích phân từng phần – Thầy Trần Hiếu
1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.
Tổng hợp 414 bài tập trắc nghiệm nguyên hàm trong đề thi thử có đáp án - Trần Văn Tài
Tài liệu gồm 63 trang tổng hợp 414 bài tập trắc nghiệm chủ đề nguyên hàm trong các đề thi thử THPT Quốc gia 2017 môn Toán, có đáp án (Những phương án được tô màu đỏ) Trích dẫn tài liệu : + Cho hai hàm số f(x), g(x) là hàm số liên tục trên R, có F(x), G(x) lần lượt là một nguyên hàm của f(x), g(x). Xét các mệnh đề sau: (I): F(x) + G(x) là một nguyên hàm của f(x) + g(x) (II): kF(x) là một nguyên hàm của kf(x) với k ∈ R (III): F(x).G(x) là một nguyên hàm của f(x)g(x) Những mệnh đề nào là mệnh đề đúng? A. (I) và (II) B. (I), (II) và (III) [ads] C. (II) D. (I) + Ký hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R. Cho hàm số f(x) xác định trên K. Ta nói F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu như: A. F(x) = f'(x) + C, C là hằng số tuỳ ý B. F'(x) = f(x) C. F'(x) = f(x) + C, C là hằng số tuỳ ý D. F(x) = f'(x) + Giả sử F(x) là nguyên hàm của hàm số f(x) = 4x – 1. Đồ thị của hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tất cả các điểm chung của đồ thị hai hàm số trên là: A. (0; 1) B. (5/2; 9) C. (0; 1) và (5/2; 9) D. (5/2; 8)