Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ thuật chọn hàm trong các bài toán tích phân từ NB - TH đến VD - VDC

Tài liệu gồm 17 trang, được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, trình bày kĩ thuật chọn hàm trong các bài toán tích phân từ nhận biết – thông hiểu đến vận dụng – vận dụng cao; đây là một kĩ thuật giải nhanh trắc nghiệm rất hay, giúp đưa một bài toán tích phân khó về một bài toán chọn hàm đơn giản, rút ngắn được thời gian giải toán; giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán. Dạng toán 1. Hàm hằng. Dạng toán 2. Hàm bậc nhất. Dạng toán 3. Hàm bậc hai. Dạng toán 4. Hàm chẵn. + Dạng 4.1. Hàm chẵn một giả thiết. + Dạng 4.2. Hàm chẵn hai giả thiết. Dạng toán 5. Hàm lẻ. + Dạng 5.1. Hàm lẻ một giả thiết. + Dạng 5.2. Hàm lẻ hai giả thiết. [ads] Dạng toán 6. Hàm tuần hoàn với chu kì T một giả thiết Dạng toán 7. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 8. Hàm tuần hoàn với chu kì T và là hàm chẵn một giả thiết. Dạng toán 9. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 10. Với bài toán có giả thiết như sau: $f(x) = f(a + b – x)$, $\int_b^a f (x)dx = c.$ Dạng toán 11. Với bài toán có giả thiết như sau: $f(x).f(a + b – x) = g(x) > 0.$ Dạng toán 12. Với bài toán có giả thiết như sau: $\int_a^b {(f(} x){)^2}dx = \alpha $, $\int_a^b f (x).g(x)dx = \beta .$ Phụ lục: Một số thủ thuật giải nhanh các dạng toán tích phân. Xem thêm : Bài toán logarit qua nhiều góc nhìn (Tài liệu cùng tác giả).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm nguyên hàm từng phần
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm từng phần, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT TRỌNG TÂM Một số dạng nguyên hàm từng phần thường gặp: + Dạng 1: I P x mx n dx ln trong đó P x là đa thức. Theo quy tắc ta đặt ln u mx n dv P x dx. + Dạng 2: sin cos x I P x dx x trong đó P x là đa thức. Theo quy tắc ta đặt sin cos u Px x dv dx x. + Dạng 3: ax b I P x e dx trong đó P x là đa thức. Theo quy tắc ta đặt ax b u Px dv a dx. + Dạng 4: sin cos x x I e dx x. Theo quy tắc ta đặt sin cos x x u x dv e dx. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương pháp đổi biến tìm nguyên hàm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp đổi biến tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. DẠNG 1. ĐỔI BIẾN SỐ HÀM SỐ VÔ TỈ (Đặt t = hàm theo biến x). + Mẫu 1: Đổi biến hàm số vô tỷ đơn giản. + Mẫu 2: Nguyên hàm dạng x f a dx. + Mẫu 3: Nguyên hàm dạng ln f x dx x. DẠNG 2. ĐỔI BIẾN SỐ HÀM VÔ TỈ (Đặt x = hàm theo biến t). + Mẫu 1: Nếu f x có chứa 2 2 a x ta đặt sin 2 2 x a tt. + Mẫu 2: Dạng 2 2 x a thì đổi biến số tan 2 2 xa t t π π. + Mẫu 3: Dạng 2 2 x a thì ta đặt sin a x t (hoặc cos a x t). + Mẫu 4: Dạng 2 2 dx x a thì ta đặt xa t tan. + Mẫu 5: Nếu f x có chứa a x a x thì đặt 2 2 cos 2 2 sin 2 cos 2 1 cos 2 cos 1 cos 2 sin dx d a t a tdt xa t ax t t ax t t. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mở đầu về nguyên hàm
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mở đầu về nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Vi phân của hàm số. 2. Nguyên hàm. a. Định nghĩa. b. Định lý. c. Tính chất của nguyên hàm. d. Bảng công thức nguyên hàm. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.