Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Anh Sơn 3 - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Anh Sơn 3, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Anh Sơn 3 – Nghệ An : + Để gây quỹ cho chương trình Tết yêu thương, một trường THPT tổ chức cho các lớp gói bánh chưng và bánh tét. Mỗi lớp được sử dụng tối đa 10kg gạo nếp, 1kg thịt và 1,6kg đậu xanh. Để gói 1 cái bánh chưng cần 0,5kg gạo nếp, 0,05kg thịt và 0,1kg đậu xanh. Để gói 1 cái bánh tét cần 0,75kg gạo nếp, 0,075kg thịt và 0,1kg đậu xanh. Mỗi cái bánh chưng bán được 30 ngàn đồng, mỗi cái bánh tét bán được 40 ngàn đồng. Để thu được số tiền nhiều nhất, mỗi lớp cần gói bao nhiêu cái bánh chưng, bao nhiêu cái bánh tét? + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm 23M là trung điểm của cạnh AB điểm 15H và điểm 59K lần lượt là chân đường cao kẻ từ C và B, điểm D thuộc đường thẳng 210xy sao cho tam giác BCD cân tại C. Tìm tọa độ các điểm C và D biết rằng điểm B có hoành độ âm. + Cho tam giác ABC. Trên các cạnh BC, CA và AB của tam giác đó, lần lượt lấy các điểm A B và C. Gọi aS bS cS và S tương ứng là diện tích của các tam giác ABC BCA CAB và ABC. Chứng minh bất đẳng thức 32abcS. Dấu đẳng thức xảy ra khi và chỉ khi nào?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.
Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 - 2021 sở GDĐT Hà Tĩnh
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một cửa hàng chuyên kinh doanh xe máy điện với chi phí mua vào là 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe này, chủ cửa hàng dự định giảm giá bán và ước tính rằng, theo tỉ lệ nếu cứ giảm 100 nghìn đồng mỗi chiếc thì số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải bán với giá mới là bao nhiêu để sau khi giảm giá, lợi nhuận thu được sẽ là cao nhất? + Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác r = √3 và độ dài đường cao kẻ từ đỉnh A là h thỏa mãn 1/h2 = 1/AB2 + 1/AC2. Tính giá trị T = (sin B)^2 – (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết rằng tam giác ABC cân tại B và DC = √5/5.
Đề thi HSG cấp trường Toán 10 năm 2020 - 2021 trường Cẩm Xuyên - Hà Tĩnh
Ngày … tháng 01 năm 2021, trường THPT Cẩm Xuyên, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. a) Tính độ dài của vectơ AB + AD theo a. b) Chứng minh ba điểm M, N, G thẳng hàng. + Cho hàm số y = x2 + mx + 1 (m là tham số). a) Lập bảng biến thiên của hàm số đã cho khi m = -4. b) Tìm điều kiện của tham số m để đồ thị hàm số đã cho cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. + Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ dưới đây. Chứng minh rằng phương trình (1 – c)x2 + (2 – b)x + 1 – a = 0 luôn có hai nghiệm phân biệt.