Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng Toán 12 từ cơ bản đến nâng cao - Trần Đình Cư

Tài liệu gồm 619 trang, được biên soạn bởi thầy giáo Trần Đình Cư, trình bày bài giảng môn Toán 12 từ cơ bản đến nâng cao, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12. CHƯƠNG 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ. BÀI 1. SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ. + Dạng 1. Cho hàm số y f x. Tìm các khoảng đồng biến và nghịch biến của hàm số. + Dạng 2. Dựa vào bảng biến thiên, tìm các khoảng đồng biến, nghịch biến của hàm số. + Dạng 3. Dựa vào đồ thị hàm số y f x hoặc y f x. Tìm các khoảng đồng biến, nghịch biến của hàm số. + Dạng 4. Tìm tham số m để hàm số đồng biến trên tập xác định. + Dạng 5. Tìm tham số m để hàm số đồ ng biến và nghịch biến trên tập con của trên khoảng có độ dài bằng l. + Dạng 6. Bài tập dành cho học sinh 8+, 9+. BÀI 2. CỰC TRỊ CỦA HÀM SỐ. + Dạng 1. Cho hàm số y f x. Tìm các điểm cực đại, cực tiểu, giá trị cực đại giá trị cực tiểu. + Dạng 2. Dựa vào bảng xét dấu của f x hoặc cho hàm số f x hoặc cho đồ thị f x bảng biến thiên của hàm số f x đồ thị của hàm số f x. Tìm các điểm cực trị của hàm số. + Dạng 3. Tìm tham số m để hàm số có cực trị, hàm số có cực trị thỏa điều kiện K. + Dạng 4. Viết phương trình đường thẳng đi qua các điểm cực trị. + Dạng 5. Bài tập dành cho học sinh điểm 8+, 9+. BÀI 3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. + Dạng 1. Tìm GTLN, GTNN của hàm số trên a b. + Dạng 2. Tìm GTLN, GTNN trên khoảng hoặc nửa khoảng. + Dạng 3. Dựa vào bảng biến thiên của hàm số y f x hoặc đồ thị hàm số. Tìm GTLN, GTNN của hàm số. + Dạng 4. Tìm tham số m để hàm số đạt giá trị lớn nhất, giá trị nhỏ nhất. + Dạng 5. Bài tập dành cho học sinh 8+, 9+. BÀI 4. ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. + Dạng 1. Dựa vào định nghĩa tìm các đường tiệm cận của đồ thị hàm số. + Dạng 2. Dựa vào bảng biến thiên của đồ thị hàm số tìm các đường tiệm cận. + Dạng 3. Cho hàm số y f x. Tìm các đường tiệm cận của đồ thị hàm số. + Dạng 4. Bài toán tìm tham số m liên quan đến đường tiệm cận. + Dạng 5. Bài tập dành cho học sinh điểm 8+, 9+. BÀI 5. ĐỒ THỊ CỦA HÀM SỐ. + Dạng 1. Cho đồ thị hàm số. Tìm hàm số. + Dạng 2. Cho bảng biến thiên. Yêu cầu tìm hàm số. + Dạng 3. Cho bảng biến thiên, đồ thị hàm số. Tìm và xác định dấu các tham số thuộc hàm số y f x. BÀI 6. TƯƠNG GIAO CỦA HAI ĐỒ THỊ VÀ TIẾP TUYẾN VỚI ĐỒ THỊ. + Dạng 1. Dựa vào đồ thị biện luận số nghiệm của phương trình. + Dạng 2. Dựa vào bảng biến thiên biện luận số nghiệm của phương trình. + Dạng 3. Tương giao của hai đồ thị. + Dạng 4. Phương trình tiếp tuyến tại điểm. + Dạng 5. Tiếp tuyến có hệ số góc. + Dạng 6. Phương trình tiếp tuyến đi qua. + Dạng 7. Bài tập dành cho học sinh điểm 8+, 9+. CHƯƠNG 2. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT. BÀI 1. LŨY THỪA. + Dạng 1. Tính, rút gọn và biến đổi biểu thức. + Dạng 2. So sánh đẳng thức và bất đẳng thức đơn giản. BÀI 2. HÀM SỐ LŨY THỪA. + Dạng 1. Tìm tập xác định và tính đạo hàm của hàm số. + Dạng 2. Tính đạo hàm. + Dạng 3. Sự biến thiên và nhận dạng đồ thị hàm số. BÀI 3. LOGARIT. + Dạng 1. Tính toán về logarit. + Dạng 2. So sánh hai số logarit. + Dạng 3. Đẳng thức logarit. + Dạng 4. Bài tập dành cho học sinh 8+, 9+. BÀI 4. HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT. + Dạng 1. Tìm tập xác định, tập giá trị của hàm số. + Dạng 2. Tính đạo hàm. + Dạng 3. So sánh, đẳng thức, bất đẳng thức. + Dạng 4. GTLN và GTNN của hàm số. + Dạng 5. Nhận dạng đồ thị. BÀI 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. + Dạng 1. Phương pháp đưa về cùng cơ số. + Dạng 2. Phương pháp đặt ẩn phụ. + Dạng 3. Phương pháp logarit hóa, mũ hóa. + Dạng 4. Sử dụng tính đơn điệu hàm số. + Dạng 5. Bài tập dành cho học sinh 8+, 9+. BÀI 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. + Dạng 1. Đưa về cùng cơ số. + Dạng 2. Phương pháp mũ hóa và logarit hóa. + Dạng 3. Phương pháp đặt ẩn phụ. + Dạng 4. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG 3. NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG. BÀI 1. NGUYÊN HÀM. + Dạng 1. Nguyên hàm đa thức. + Dạng 2. Nguyên hàm phân thức. + Dạng 3. Nguyên hàm căn thức. + Dạng 4. Nguyên hàm của hàm số lượng giác. + Dạng 5. Nguyên hàm hàm mũ, loga. + Dạng 6. Nguyên hàm từng phần. + Dạng 7. Bài tập dành cho học sinh 8+, 9+. BÀI 2.TÍCH PHÂN. + Dạng 1. Tích phân hữu tỉ. + Dạng 2. Tích phân vô tỉ. + Dạng 3. Tích phân lượng giác. + Dạng 4. Tích phân từng phần. + Dạng 5. Tích phân chứa dấu giá trị tuyệt đối. + Dạng 6. Tích phân ẩn cơ bản. + Dạng 7. Bài tập dành cho học sinh điểm 8+, 9+. BÀI 3. ỨNG DỤNG HÌNH HỌC TÍCH PHÂN. + Dạng 1. Tính diện tích giới hạn bởi 1 đồ thị. + Dạng 2. Tính diện tích giới hạn bởi 2 hai đồ thị. + Dạng 3. Tính thể tích vật thể tròn xoay dựa vào định nghĩa. + Dạng 4. Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi 1 đồ thị. + Dạng 5. Ứng dụng tích phân trong vật lý. + Dạng 6. Ứng dụng tích phân vào giải các bài toán thực tế. CHƯƠNG 4. SỐ PHỨC. BÀI 1. SỐ PHỨC. BÀI 2. CỘNG, TRỪ, NHÂN SỐ PHỨC. BÀI 3. PHÉP CHIA SỐ PHỨC. + Dạng 1. Phần thực – phần ảo & các phép toán. + Dạng 2. Tìm số phức z thỏa mãn điều kiện. + Dạng 3. Biểu diễn số phức. + Dạng 4. Tập hợp. + Dạng 5. Bài tập 8+, 9+. BÀI 4. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. + Dạng 1. Phương trình bậc hai hệ số thực. + Dạng 2. Phương trình quy về phương trình bậc hai. + Dạng 3. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG I. KHỐI ĐA DIỆN. BÀI 1. KHÁI NIỆM VỀ KHỐI ĐA DIỆN. BÀI 2. KHÁI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. BÀI 3. KHÁI NIỆM VÀ THỂ TÍCH KHỐI ĐA DIỆN. + Dạng 1. Khối chóp có cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. + Dạng 4. Khối chóp có hình chiếu lên mặt phẳng đáy. + Dạng 5. Một số dạng khác. + Dạng 6. Thể tích lăng trụ đứng, lăng trụ đều. + Dạng 7. Thể tích lăng trụ xiên. + Dạng 8. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG II. MẶT NÓN, MẶT TRỤ VÀ KHỐI TRỤ. BÀI 1. MẶT NÓN – HÌNH NÓN – KHỐI NÓN. + Dạng 1. Bài tập cơ bản. + Dạng 2. Bài tập dành cho học sinh 8+, 9+. BÀI 2. MẶT TRỤ – HÌNH TRỤ – KHỐI TRỤ. + Dạng 1. Bài tập cơ bản. + Dạng 2. Bài tập dành cho học sinh 8+, 9+. BÀI 3. MẶT CẦU – KHỐI CẦU. + Dạng 1. Bài tập cơ bản. + Dạng 2. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. BÀI 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN. + Dạng 1. Các dạng toán mở đầu về hệ tọa độ oxyz. DẠNG 2. CÁC BÀI TOÁN CƠ BẢN VỀ PHƯƠNG TRÌNH MẶT CẦU. + Dạng 3. Bài tập dành cho học sinh 8+, 9+. BÀI 2. MẶT PHẲNG TRONG KHÔNG GIAN. + Dạng 1. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một vectơ pháp tuyến. + Dạng 2. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một cặp vectơ chỉ phương. + Dạng 3. Lập phương trình mặt phẳng liên quan đến khoảng cách. + Dạng 4. Viết phương trình mặt phẳng liên quan đến mặt cầu. + Dạng 5. Bài tập dành cho học sinh 8+, 9+. BÀI 3. ĐƯỜNG THẲNG TRONG KHÔNG GIAN. + Dạng 1. Viết phương trình đường thẳng khi tìm được một vectơ chỉ phương và điểm thuộc đường thẳng. + Dạng 2. Viết phương trình đường thẳng bằng phương pháp tham số hóa. + Dạng 3. Vị trí tương đối giữa hai đường thẳng. + Dạng 4. Vị trí tương đối giữa đường thẳng và mặt phẳng. + Dạng 5. Vị trí tương đối giữa đường thẳng và mặt cầu. + Dạng 6. Bài tập dành cho học sinh điểm 8+, 9+.

Nguồn: toanmath.com

Đọc Sách

Sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 18 trang, hướng dẫn phương pháp sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. Phần 1 . Đặt vấn đề. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn các phương pháp “Sử dụng định lý Ceva và Menelaus” để giải quyết lớp bài toán trên. Đây là phương pháp khá cổ điển và đặc trưng cho lớp bài toán này. Phần 2 . ĐỊNH LÝ CEVA VÀ MENELAUS TRONG BÀI TOÁN CHỨNG MINH ĐỒNG QUY, THẲNG HÀNG. 1 Lý thuyết. 1.1. Định lí Ceva. 1.2. Định lí Ceva dạng lượng giác (Ceva sin). 1.3 Định lí Menelaus. 2 Bài tập minh họa. 3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng
Tài liệu gồm 29 trang, được biên soạn bởi thầy giáo Nguyễn Bá Hoàng (trường THPT chuyên Lào Cai, tỉnh Lào Cai), hướng dẫn phương pháp ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. A. PHẦN MỞ ĐẦU I. Lý do chọn đề tài: Các bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá là nội dung khó trong đề thi. Có rất nhiều dạng bài tập về hình học phẳng cùng với sự tương ứng của các công cụ đi cùng, trong đó hàng điểm điều hòa là một trong những công cụ mạnh để giải nhiều lớp bài toán về hình học. Mặc dù là một vấn đề khá quen thuộc của hình học phẳng, kiến thức về nó khá đơn giản và dễ hiểu, tuy nhiên nó có ứng dụng nhiều đối với các bài toán chứng minh vuông góc, đồng quy, thẳng hàng, điểm cố đinh, đường cố định hay các bài toán về tập hợp điểm …. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán có liên quan đến hàng điểm điều hòa thường xuyên được đề cập và thường được xem là những dạng toán hay của kì thi. Chính vì vậy tác giả lựa chọn chuyên đề: “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” để thấy được ứng dụng quan trọng của hàng điểm điều hòa đối với khá nhiều dạng bài tập hình học phẳng. Trong chuyên đề tác giả cố gắng tập hợp được các bài toán đặc trưng cho việc sử dụng công cụ hàng điểm điều hòa. II. Mục đích của chuyên đề: Thông qua chuyên đề “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” tác giả rất mong muốn nhận được góp ý trao đổi của các bạn đồng nghiệp và các em học sinh. Chúng tôi mong muốn chuyên đề này góp một phần nhỏ để việc ứng dụng hàng điểm điều hòa trong bài toán hình học phẳng đạt hiệu quả cao nhất. Từ đó giúp các em học sinh hiểu rõ hơn về việc sử dụng hàng điểm điều hòa và tăng khả năng vận dụng nó vào giải các bài toán hình học một cách tốt nhất. B. PHẦN NỘI DUNG I. Hệ thống lý thuyết cơ bản về hàng điểm điều hòa. 1. Tỉ số kép của hàng điểm. 2. Hàng điểm điều hòa. 3. Tỉ số kép của chùm đường thẳng – Chùm điều hòa. 4. Tứ giác điều hòa. II. Bài tập áp dụng. Dạng 1: Khai thác bài toán liên quan đến đường phân giác. Dạng 2: Chứng minh đồng quy, thẳng hàng. C. PHẦN KẾT LUẬN Trên đây là một số bài toán về đường phân giác, đồng quy, thẳng hàng sử dụng đến hàng điểm điều hòa. Kiến thức về hàng điểm điều hòa khá dễ hiểu và đơn giản nhưng ứng dụng của nó thì khá nhiều. Thông qua đó giúp học sinh tiếp cận và hình thành kĩ năng sử dụng hàng điểm điều hòa, cũng như lựa chọn được cách giải bài toán phù hợp, tăng thêm tính say mê, tích cực tìm tòi và sáng tạo. Chuyên đề trên nhằm mục đích trao đổi với các thầy cô dạy bộ môn toán về việc sử dụng hàng điểm điều hòa để giải các bài toán hình học phẳng. Do kiến thức còn nhiều hạn chế nên chắc rằng chuyên đề khó tránh khỏi các thiếu sót, chúng tôi mong có sự góp ý của quý thầy cô để chuyên đề được hoàn thiện hơn. Tác giả xin chân thành cảm ơn!
Một số phương pháp giải phương trình hàm và bất phương trình hàm - Bùi Ngọc Diệp
Tài liệu gồm 109 trang, được biên soạn bởi thầy giáo Bùi Ngọc Diệp, hướng dẫn một số phương pháp giải phương trình hàm và bất phương trình hàm qua các kỳ thi Olympic Toán. Hàm số là một trong những đối tượng nghiên cứu trung tâm của Toán sơ cấp. Một trong những chủ đề liên quan đến hàm số thường xuyên xuất hiện trong các kỳ thi chọn học sinh giỏi cấp tỉnh, kỳ thi chọn học sinh giỏi Quốc gia và kỳ thi Olympic toán Quốc tế là giải phương trình hàm, bất phương trình hàm. Đối với các phương trình, bất phương trình đại số trong sách giáo khoa, mục tiêu của chúng ta là tìm các biến chưa biết nhưng đối với phương trình hàm, bất phương trình hàm chúng ta cần phải tìm một “hàm số” thỏa mãn một số điều kiện ràng buộc cho trước của bài toán. Đây là một chủ đề khó. Đừng trước mỗi bài toán thuộc chủ đề này, học sinh phải nắm vững được những kĩ thuật, phương pháp giải, cũng như phải có sự xử lí khéo léo khi đứng trước những tình huống cụ thể. Chúng ta có nhiều phương pháp cũng như hướng tiếp cận khác nhau đối với các bài toán thuộc chủ đề này. Với mục tiêu muốn đóng góp một phần nào đó trong việc hoàn thành một bức tranh tổng thể về các phương pháp giải phương trình hàm và bất phương trình hàm, trong chuyên đề này chúng tôi sẽ giới thiệu tới bạn đọc hai phương pháp thường được sử dụng để giải quyết các bài toán thuộc chủ đề này thông qua các bài toán cụ thể, đó là phương pháp giải tích và phương pháp tổng hợp. Trong từng phương pháp, chúng tôi sẽ đưa ra một hệ thống các bài toán với những lời giải chi tiết, rõ ràng. Hơn nữa, sau mỗi lời giải, chúng tôi ra đưa những nhận xét, phân tích, bình luận để giúp người đọc có một cách nhìn tổng quan hơn về bài toán đó cũng như phương pháp được sử dụng. Mục tiêu của chuyên đề này là giới thiệu phương pháp giải tích và phương pháp tổng hợp với những kĩ thuật đặc trưng của nó thông qua các ví dụ cụ thể thông qua một số bài toán phương trình hàm, bất phương trình đã xuất hiện trong các kỳ thi học sinh giỏi quốc gia và quốc tế. Chuyên đề được bố cục như sau: Trong chương 1, chúng tôi sẽ giới thiệu phương pháp giải tích thông qua hệ thống các bài toán cùng với những kĩ thuật và lưu ý cần thiết khi sử dụng phương pháp này. Trong chương 2, chúng tôi sẽ giới thiệu tới bạn đọc phương pháp tổng hợp thông qua hệ thống gồm mười bài toán khác nhau. Đây là phương pháp thông dụng nhất, nó là sự kết hợp giữa nhiều phương pháp, kĩ thuật khác nhau. Trong chương 3, chúng tôi đưa một số bài toán khác mà phương pháp giải chúng là hai phương pháp nói trên nhưng không kèm theo các nhận xét, phân tích. Trong chương 4, chúng tôi đưa một hệ thống các bài toán không có lời giải dành cho bạn đọc tự luyện tập.
Chuyên đề phương trình hàm đa thức - Nguyễn Phúc Thọ
Chuyên đề phương trình hàm đa thức gồm 22 trang, được biên soạn bởi tác giả Nguyễn Phúc Thọ, tuyển tập các bài toán hay về phương trình hàm đa thức, có đáp án và lời giải chi tiết. Trích dẫn chuyên đề phương trình hàm đa thức – Nguyễn Phúc Thọ : + Tìm tất cả các đa thức P(x) thoả mãn P(a + b) = 6 P(a) + P(b) + 15a 2b 2 (a + b)) (1) Với mọi số phức a và b sao cho a 2 + b 2 = ab. + Tìm đa thức P(x) với hệ số thực, có bậc nhỏ hơn n ∈ N∗. Sao cho tồn tại n số thực đôi một phân biệt là a1, a2, …, an thoả mãn điều kiện với mỗi i, j ∈ {1,2,…,n} ta có |P(ai)− P(aj)| = n|ai − aj|. + Tìm tất cả các đa thức P(x) với hệ số thực và không có nghiệm bội sao cho với mỗi số phức z thì phương trình zP(z) = 1 thoả mãn khi và chỉ khi P(z −1)P(z + 1) = 1.