Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải toán bằng cách lập phương trình hệ phương trình

Nội dung Giải toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Giải toán bằng phương pháp lập phương trình - hệ phương trìnhCác loại bài toán chuyển độngBài toán liên quan đến năng suất lao động - công việc Giải toán bằng phương pháp lập phương trình - hệ phương trình Để giải bài toán bằng phương pháp lập phương trình - hệ phương trình, ta cần thực hiện theo các bước sau: Bước 1: Chọn ẩn số và đặt điều kiện nếu cần. Bước 2: Tính các đại lượng theo giả thiết và ẩn số, sau đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình đã lập. Bước 4: Kiểm tra điều kiện và đưa ra câu trả lời. Các loại bài toán chuyển động Quãng đường = Vận tốc * Thời gian Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường. Khi hai xe đi ngược chiều gặp nhau: Thời gian đi được bằng nhau và tổng quãng đường bằng quãng đường cần đi. Nếu xe A đuổi kịp xe B, hiệu quãng đường đi được bằng quãng đường giữa A và B. Với Ca nô, tàu xuồng trên dòng nước: Vận tốc = Vận tốc riêng ± Vận tốc dòng nước. Bài toán liên quan đến năng suất lao động - công việc Trong các bài toán này, khối lượng công việc = năng suất lao động * thời gian. Với các bước hướng dẫn và ví dụ cụ thể, học sinh sẽ dễ dàng áp dụng phương pháp lập phương trình để giải các bài toán Toán lớp 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Bằng cách thực hành nhiều bài tập, học sinh sẽ nâng cao khả năng giải quyết vấn đề và hiểu sâu hơn về các khái niệm Toán học.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc ở tâm, số đo cung
Tài liệu gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc ở tâm, số đo cung, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. I. TÓM TẮT LÝ THUYẾT 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Định lí. II. BÀI TẬP MINH HỌA Phương pháp giải: Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau: + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. + Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề vị trí tương đối của hai đường tròn
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của hai đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 7 và bài số 8. A. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm. Đường nối tâm (đường thẳng đi qua tâm hai đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: + Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. + Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R và r. + Hai đường tròn cắt nhau. + Hai đường tròn tiếp xúc nhau: Tiếp xúc ngoài; Tiếp xúc trong. + Hai đường tròn không giao nhau: Ở ngoài nhau; (O) đựng (O’); (O) và (O’) đồng tâm. B. CÁC DẠNG BÀI MINH HỌA Dạng 1 : Nhận biết vị trí tương đối của hai đường tròn. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn. Dạng 2 : Bài tập về hai đường tròn cắt nhau. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Bài tập về hai đường tròn tiếp xúc. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không cắt nhau. C. TRẮC NGHIỆM RÈN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. A. TÓM TẮT LÝ THUYẾT Dấu hiệu 1. Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng âỳ là một tiếp tuyến của đường tròn. Dấu hiệu 2. Theo định nghĩa tiếp tuyến. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: + Cách 1. Chứng minh C nằm trên (O) và OC vuông góc với a tại C. + Cách 2. Kẻ OH vuông góc a tại H và chứng minh OH = OC = R. + Cách 3. Vẽ tiếp tuyến a’ của (O) và chứng minh a và a’ trùng nhau. Dạng 2 . Tính độ dài. Phương pháp giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3 . Bài toán tổng hợp. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của đường thẳng và đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ + Vị trí tương đối. + Tính chất của tiếp tuyến. + Tính chất hai tiếp tuyến cắt nhau. + Đường tròn nội tiếp tam giác. + Đường tròn bàng tiếp tam giác. B. CÁC DẠNG BÀI TẬP TỰ LUẬN MINH HỌA Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài tập vận dụng tính chất tiếp tuyến. Dạng 3: Chứng minh tiếp tuyến của đường tròn. Dạng 4: Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN