Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội

Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Nông Cống 3 Thanh Hóa
Nội dung Đề thi KSCL lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Nông Cống 3 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 701 – 702 – 703 – 704. Trích dẫn Đề thi KSCL lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Một phân xưởng có hai máy đặc chủng A, B sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại 2 lãi 1,6 triệu dồng. Muốn sản xuất 1 tấn sản phẩm loại I dùng máy A trong 3 giờ và máy B trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II dùng máy A trong 1 giờ và máy B trong 1 giờ. Một máy không thể dùng để sản suất đồng thời 2 loại sản phẩm. Máy A làm việc không quá 6 giờ trong một ngày, máy B một ngày chỉ làm việc không quá 4 giờ. Số tiền lãi cao nhất một ngày là? + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB 40 m CAB CBA 45 70. Vậy sau khi đo đạc và tính toán khoảng cách AC gần nhất với giá trị nào sau đây? + Cho tập hợp A = {đỏ; cam; tím; hồng; lam), B = {lục; hồng, chàm; tím}. Kết quả của phép toán A B là? File WORD (dành cho quý thầy, cô):