Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

105 bài toán PT - HPT - BPT trong đề thi vào 10 môn Toán năm học 2021 - 2022

Tài liệu gồm 17 trang, được tổng hợp bởi thầy giáo Đặng Quang Thịnh, tuyển tập 105 bài toán về phương trình – hệ phương trình – bất phương trình (PT – HPT – BPT) trong đề thi vào 10 môn Toán năm học 2021 – 2022, giúp học sinh lớp 9 ôn tập để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trích dẫn tài liệu 105 bài toán PT – HPT – BPT trong đề thi vào 10 môn Toán năm học 2021 – 2022 : + Cho phương trình: x2 − (m − 2)x + m + 1 (1) a) Giải phương trình (1) với m = −3 b) Chứng tỏ phương trình (1) luôn có nghiệm với mọi số thực m c) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền là h = 2√5. + Theo các chuyên gia về sức khoẻ, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khoẻ. Để rèn luyện sức khoẻ, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người cần phải đi bộ ít nhất 6000 bước. Hai người đi bộ ở công viên và thấy rằng, nếu cùng nhau đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ dã đạt được số bước tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24km/h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của Mai khi đi đến trường bằng xe đạp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số nguyên tố
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề số nguyên tố do tác giả Trịnh Bình tổng hợp, tài liệu gồm 72 trang hướng dẫn giải các dạng toán điển hình về số nguyên tố, giúp học sinh khối lớp 6 ôn thi học sinh giỏi môn Toán. Khái quát nội dung tài liệu chuyên đề số nguyên tố: Phần 1 . Tóm tắt lý thuyết cần nhớ. 1. Định nghĩa số nguyên tố. 2. Một số định lý cơ bản. + Định lý 1: Dãy số nguyên tố là dãy số vô hạn. + Định lý 2: Mọi số tự nhiên lớn hơn 1 đều phân tích được ra thừa số nguyên tố một cách duy nhất (không kể thứ tự các thừa số). 3. Cách nhận biết số nguyên tố. 4. Số các ước số và tổng các ước số. 5. Hai số nguyên tố cùng nhau. 6. Một số định lý đặng biệt. + Định lý 1: Định lý Đirichlet: Tồn tại vô số số nguyên tố p có dạng: p = ax + b (x thuộc N, a, b là hai số nguyên tố cùng nhau). + Định lý 2: Định lý Tchebycheff: Trong khoảng từ số tự nhiên n đến số tự nhiên 2n có ít nhất một số nguyên tố (n > 2). + Định lý 3: Định lý Vinogradow: Mọi số lẻ lớn hơn 3^3 là tổng của 3 số nguyên tố. [ads] Phần 2 . Các dạng toán thường gặp. + Dạng toán 1. Sử dụng phương pháp phân tích thừa số. + Dạng toán 2. Tìm số nguyên tố p thỏa mãn điều kiện cho trước. + Dạng toán 3. Nhận biết số nguyên tố, sự phân bố số nguyên tố trong N. + Dạng toán 4. Các bài toán chứng minh số nguyên tố. + Dạng toán 5. Có bao nhiêu số nguyên tố dạng ax + b (x thuộc N, (a,b) = 1). + Dạng toán 6. Áp dụng định lý Fermat. + Dạng toán 7. Các bài toán về các số nguyên tố cùng nhau. + Dạng toán 8. Giải phương trình nghiệm nguyên nhờ tính chất số nguyên tố. + Dạng toán 9. Các bài toán liên quan đến số nguyên tố. Phần 3 . Tuyển chọn các bài toán quan hệ chia hết trong các đề thi toán THCS. Phần 4 . Hướng dẫn các bài toán chia hết trong các đề thi toán THCS.
Chuyên đề phương trình đại số - Trịnh Bình
Tài liệu chuyên đề phương trình đại số gồm 56 trang được tổng hợp bởi tác giả Trịnh Bình, hướng dẫn phương pháp giải các bài toán phương trình đại số, giúp học sinh học tốt chương trình Đại số lớp 9 và ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1 . PHƯƠNG TRÌNH ĐA THỨC BẬC CAO. Để giải phương trình đa thức bậc cao chúng ta thường chuyển phương trình đó về dạng phương trình tích. Phương trình bậc 3: Thông thường để giải được phương trình bậc 3 chúng ta phải tìm được một nghiệm của phương trình, sau đó phân tích thành nhân tử và chuyển về giải phương trình bậc 2. Phương trình bậc 4: Để giải phương trình bậc 4 chúng ta thường nhẩm một nghiệm và phân tích phương trình bậc 4 thành tích của một đa thức bậc 3 và đa thức bậc nhất sau đó dùng các phương pháp để giải phương trình bậc 3 hoặc phân tích thành tích hai tam thức bậc 2, hoặc đặt ẩn phụ chuyển về giải phương trình bậc 2. + Dạng 1. Phương trình trùng phương: $a{x^4} + b{x^2} + c = 0$ $(a \ne 0).$ + Dạng 2. Phương trình có dạng: ${(x + m)^4} + {(x + n)^4} = p$ $(p > 0).$ + Dạng 3. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e$ trong đó $a + b = c + d.$ + Dạng 4. Phương trình có dạng: $\left( {a{x^2} + {b_1}x + c} \right)\left( {a{x^2} + {b_2}x + c} \right) = m{x^2}.$ + Dạng 5. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e{x^2}$ trong đó $ab = cd.$ + Dạng 6. Phương trình có dạng: ${a_1}{\left( {b{x^2} + {c_1}x + d} \right)^2}$ $ + {a_2}\left( {b{x^2} + {c_2}x + d} \right)$ $ = A{x^2}.$ + Dạng 7. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm bx + a = 0.$ + Dạng 8. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm kbx + {k^2}a = 0$ $(k > 0).$ Phương trình cao hơn bậc 4: Đối với các phương trình bậc cao hơn 4 phương pháp chung là dùng cách đưa về dạng phương trình tích hoặc đặt ẩn phụ để đưa về giải các phương trình bậc thấp hoặc với nhiều bài toán chúng ta nên lưu tâm tới việc có thể sử dụng phương pháp đánh giá để giải toán. [ads] CHỦ ĐỀ 2 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC. Bước 1: Tìm điều kiện xác định của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. Bước 3: Giải phương trình vừa nhận được. Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. Một số dạng phương trình phân thức thường gặp: + Dạng 1. Phương trình có dạng: $\frac{{{a_1}}}{{x + {b_1}}} + \frac{{{a_2}}}{{x + {b_2}}} + \ldots + \frac{{{a_n}}}{{x + {b_n}}} = A.$ + Dạng 2. Phương trình có dạng: $\frac{{{a_1}x + {b_1}}}{{x + {c_1}}} + \frac{{{a_2}x + {b_2}}}{{x + {c_2}}} + \ldots + \frac{{{a_n}x + {b_n}}}{{x + {c_n}}} = A.$ + Dạng 3. Phương trình có dạng: $\frac{{mx}}{{a{x^2} + {b_1}x + c}} + \frac{{nx}}{{a{x^2} + {b_2}x + c}} = p$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{a{x^2} + {d_1}x + c}}{{a{x^2} + {d_2}x + c}} = 0$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{px}}{{a{x^2} + dx + c}} = 0.$ Dạng 4. Phương trình có dạng: ${x^2} + {\left( {\frac{{ax}}{{x + a}}} \right)^2} = b$ với $a \ne 0$, $x \ne – a.$ Dạng 5. Sử dụng phương ph{p đ{nh gi{ để giải phương trình chứa phân thức CHỦ ĐỀ 3 . PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI. Để giải phương trình có chứa ẩn trong dấu giá trị tuyệt đối cần khử dấu giá trị tuyệt đối. Ta cần nhớ giá trị tuyệt đối của một biểu thức bằng chính nó nếu nó có giá trị không âm, bằng số đối của nó nếu nó có giá trị âm. Do đó để bỏ dấu giá trị tuyệt đối ta phải xét các giá trị làm biểu thức âm hoặc không âm.
Một số phương pháp giải phương trình nghiệm nguyên - Tạ Văn Đức
Trong chương trình môn Toán cấp Trung học Cơ sở, bài toán phương trình nghiệm nguyên là một chủ đề hay nhưng khó đối với học sinh, dạng toán này được bắt gặp khá thường xuyên trong các đề thi học sinh giỏi Toán lớp 8 – lớp 9. Để phục vụ công tác bồi dưỡng học sinh giỏi Toán lớp 8 và Toán lớp 9, thầy Tạ Văn Đức biên soạn tài liệu giới thiệu một số phương pháp giải phương trình nghiệm nguyên. Khái quát nội dung tài liệu một số phương pháp giải phương trình nghiệm nguyên – Tạ Văn Đức: Phương pháp 1 . Áp dụng tính chia hết. 1. Phương trình dạng ax + by = c. 2. Đưa về phương trình ước số. Phương pháp 2 . Phương pháp lựa chọn Modulo (hay còn gọi là xét số dư từng vế). 1. Xét số dư hai vế. 2. Sử dụng số dư để chỉ ra phương trình vô nghiệm. Phương pháp 3 . Sử dụng bất đẳng thức. 1. Đối với các phương trình mà các biến có vai trò như nhau thì người ta thường dùng phương pháp sắp thứ tự các biến. 2. Áp dụng bất đẳng thức cổ điển. 3. Áp dụng tính đơn điệu của từng vế. 4. Dùng điều kiện delta ≥ 0 (hoặc delta’ ≥ 0) để phương trình bậc hai có nghiệm. [ads] Phương pháp 4 . Phương pháp chặn hay còn gọi là phương pháp đánh giá. Chủ yếu dựa vào hai nhận xét sau: + Không tồn tại n thuộc Z thỏa mãn a^2 < n^2 < (a + 1)^2 với a là một số nguyên. + Nếu a^2 < n^2 < (a + 2)^2 (với a và n thuộc Z) thì n = a + 1. Phương pháp 5 . Sử dụng tính chất của số chính phương. Một số tính chất thường được sử dụng: + Số chính phương không tận cùng bằng 2, 3, 7, 8. + Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2. + Số chính phương khi chia cho 3, cho 4 chỉ có thể dư 0 hoặc 1. + Số chính phương chia cho 5, cho 8 thì số dư chỉ có thể là 0, 1 hoặc 4. + Số chính phương lẻ chia cho 4, 8 thì số dư đều là 1. + Lập phương của một số nguyên chia cho 9 chỉ có thể dự 0, 1 hoặc 8. Phương pháp 6 . Phương pháp lùi vô hạn (hay còn gọi là phương pháp xuống thang). Phương pháp này dùng để chứng minh một phương trình nào đó ngoài nghiệm tầm thường x = y = z = 0 thì không còn nghiệm nào khác. Phương pháp 7 . Nguyên tắc cực hạn (hay còn gọi là nguyên lí khởi đầu cực trị). Về mặt hình thức thì phương pháp này khác với phương pháp lùi vô hạn nhưng về ý tưởng sử dụng thì như nhau, đều chứng minh phương trình ngoài nghiệm tầm thường không có nghiệm nào khác. Phương pháp 8 . Sử dụng mệnh đề cơ bản của số học.
Các dạng toán về biểu thức đại số
Nhằm đáp ứng nhu cầu của giáo viên Toán THCS và học sinh về các chuyên đề môn Toán lớp 7, THCS. giới thiệu đến thầy cô và các em chuyên đề các bài toán về biểu thức đại số. Chuyên đề gồm 116 trang được biên soạn bởi tác giả Trịnh Bình, được tham khảo qua nhiều tài liệu tương tự, nhằm đáp ứng nhu cầu về tài liệu hay và cập nhật được các dạng toán mới về biểu thức đại số thường được ra trong các kì thi gần đây. Khái quát nội dung tài liệu các dạng toán về biểu thức đại số: Chủ đề 1 . Rút gọn phân thức hữu tỉ. + Dạng toán 1: Rút gọn biểu thức hữu tỉ. + Dạng toán 2: Rút gọn biểu thức hữu tỉ và bài toán liên quan. + Dạng toán 3: Rút gọn biểu thức có tính quy luật. Bài tập vận dụng. Hướng dẫn giải. Chủ đề 2 . Tính giá trị biểu thức một biến. + Dạng toán 1: Tính giá trị biểu thức chứa đa thức. + Dạng toán 2: Tính giá trị biểu thức chứa căn thức. + Dạng toán 3: Tính giá trị biểu thức có biến là nghiệm của phương trình. Bài tập vận dụng. Hướng dẫn giải. [ads] Chủ đề 3 . Tính giá trị biểu thức nhiều biến có điều kiện. + Dạng toán 1: Sử dụng phương pháp phân tích. + Dạng toán 2: Sử dụng phương pháp hệ số bất định. + Dạng toán 3: Sử dụng phương pháp hình học. + Dạng toán 4: Sử dụng & vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Chủ đề 4 . Một số phương pháp chứng minh đẳng thức. + Dạng toán 1: Sử dụng phép biến đổi thương đương. + Dạng toán 2: Sử dụng hằng đẳng thức quen biết. + Dạng toán 3: Sử dụng phương pháp đổi biến. + Dạng toán 4: Sử dụng bất đẳng thức. + Dạng toán 5: Sử dụng lượng liên hợp. + Dạng toán 6: Chứng minh có một số bằng hằng số cho trước. + Dạng toán 7: Sử dụng & Vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Chủ đề 5 . Rút gọn biểu thức đại số và bài toán liên quan. + Dạng toán 1: Các bài toán biến đổi căn thức thường gặp. + Dạng toán 2: Sử dụng ẩn phụ để đơn giản hóa bài toán. + Dạng toán 3: Các bài toán về tổng dãy có quy luật. + Dạng toán 4: Rút gọn biểu thức chứa căn có một hoặc nhiều ẩn. + Dạng toán 5: Rút gọn biểu thức và bài toán liên quan. Bài tập vận dụng. Hướng dẫn giải.