Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán lớp 9 phần Đại số

Tài liệu gồm 32 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, tổng hợp kiến thức môn Toán lớp 9 phần Đại số, giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1 CĂN BẬC HAI – CĂN BẬC BA. 1. Căn bậc hai – Căn bậc ba. 2. Điều kiện để biểu thức xác định (có nghĩa). 3. Liên hệ phép khai phương – phép nhân – phép chia. 4. Đưa thừa số vào trong – ra ngoài căn. 5. Trục căn thức ở mẫu. 6. Giải phương trình. 7. Các dạng toán hay gặp. 8. So sánh căn bậc hai. 9. Tính giá trị của biểu thức. 10. So sánh biểu thức có chứa biến. 11. Tìm giá trị của x thỏa mãn đẳng thức (sau rút gọn). 12. Tìm giá trị của x thỏa mãn bất phương trình (sau rút gọn). 13. Tìm x nguyên, tìm x thuộc N, tìm số nguyên lớn nhất, số nguyên nhỏ nhất để giá trị của biểu thức A nguyên. 14. Tìm giá trị của x, tìm x thuộc Q; x thuộc R để giá trị biểu thức A nguyên. 15. Tìm giá trị của tham số m để A(x) = m có nghiệm. 16. Tìm giá trị của tham số m để P > f(m) hoặc P < f(m) có nghiệm, vô nghiệm. 17. Tìm giá trị lớn nhất – giá trị nhỏ nhất của biểu thức sau rút gọn. 2 HÀM SỐ BẬC NHẤT – BẬC HAI. 1. Tìm điều kiện để hàm số là hàm số bậc nhất. 2. Hàm số đồng biến – nghịch biến. 3. Hệ số góc của đường thẳng. 4. Vẽ đồ thị hàm số bậc nhất. 5. Tính diện tích các hình – độ dài các đoạn thẳng trên hệ trục. 6. Tìm giao tuyến của hai đồ thị y = f(x) và y = g(x). 7. Vẽ đồ thị hàm số y = |f(x)|. 8. Biện luận số nghiệm của phương trình f(x) = f(m) dựa vào đồ thị. 9. Vị trí tương đối giữa hai đường thẳng. 10. Hai đường thẳng cắt nhau thỏa mãn điều kiện k. 11. Lập phương trình đường thẳng. 12. Tìm điểm cố định của y = f(x;m); chứng minh đồ thị luôn đi qua điểm cố định (hoặc tìm điểm mà đồ thị luôn đi qua). 13. Ba điểm thẳng hàng – không thẳng hàng (Ba điểm là ba đỉnh tam giác). 14. Tìm điều kiện tham số để ba đường thẳng đồng quy. 15. Khoảng cách từ gốc tọa độ đến đường thẳng. 3 ĐỒ THỊ HÀM SỐ 1. Tính chất. 2. Điểm thuộc đồ thị. 3. Vị trí tương đối của đường thẳng y = f(x) = mx + n và Parabol y = g(x) = ax2. 4 GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH. 1. Phương pháp chung. 2. Dạng toán cấu tạo số. 3. Dạng toán làm chung – làm riêng – vòi nước. 4. Dạng toán chuyển động. 5. Dạng toán có nội dung hình học. 6. Dạng toán năng suất – phần trăm. 7. Dạng toán có nội dung lí hóa. 5 HỆ PHƯƠNG TRÌNH. 1. Kiểm tra (x0;y0) có phải là nghiệm của phương trình ax + by = 0 không? 2. Tìm nghiệm tổng quát của phương trình ax + by = 0. 3. Tìm nghiệm nguyên, nguyên dương, nguyên âm của ax + by = 0. 4. Dự đoán số nghiệm của hệ phương trình. 5. Giải hệ phương trình bằng phương pháp thế. 6. Giải hệ phương trình bằng phương pháp cộng. 7. Giải hệ phương trình bằng phương pháp đặt ẩn phụ. 8. Hệ phương trình chứa dấu giá trị tuyệt đối. 9.Tìm hệ số a; b biết hệ a1x + b1y = c1 và a2x + b2y = c2 có nghiệm là x0;y0. 10. Hệ phương trình tương đương. 11. Giải và biện luận hệ phương trình. 12. Tìm m để hệ có nghiệm duy nhất thỏa mãn điều kiện K. 13. Tìm hệ thức độc lập giữa x, y không phụ thuộc vào m (tìm quỹ tích điểm M(x;y) hoặc chứng minh M(x;y) nằm trên đường thẳng cố định). 6 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I. 7 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II. 8 HỆ ĐẲNG CẤP BẬC HAI. 9 PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0. 1. Giải phương trình ax2 + bx + c = 0. 2. Tìm hai số biết tổng và tích. 3. Định lý Vi-Ét. 4. Mối liên hệ giữa hai nghiệm x1; x2. 5. Giải và biện luận ax2 + bx + c = 0. 6. Chứng minh phương trình luôn có nghiệm – vô nghiệm. 7. Phương trình có hai nghiệm phân biệt – Phương trình có nghiệm kép. 8. Lập phương trình bậc hai khi biết nghiệm. 9. Tìm m để phương trình có nghiệm x0. 10. Phương trình có hai nghiệm dương phân biệt (nằm bên phải Oy). 11. Phương trình có hai nghiệm âm phân biệt (nằm bên trái trục tung). 12. Phương trình có hai nghiệm trái dấu + cùng dấu (nằm về hai phía hoặc cùng phía với Oy). 13. Tìm m để phương trình có ít nhất một nghiệm dương. 14. Phương trình có một nghiệm dương. 15. Tìm m để phương trình có ít nhất một nghiệm âm. 16. Phương trình có một nghiệm âm. 17. Tìm m để phương trình có một nghiệm. 18. Phương trình có hai nghiệm đối nhau. 19. Phương trình có hai nghiệm là nghịch đảo nhau. 20. Chứng minh có ít nhất một phương trình có nghiệm. 21. Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện. 22. Hệ thức giữa x1; x2 không phụ thuộc m. 23. Tìm giá trị lớn nhất – nhỏ nhất của biểu thức chứa x1; x2. 24. Phương trình có hai nghiệm phân biệt nguyên. 25. Tìm m để phương trình a1x2 + b1x + c1 = 0 và a2x2 + b2x + c2 = 0 có nghiệm chung. 26. So sánh một số với nghiệm của phương trình ax2 + bx + c = 0. 10 PHƯƠNG TRÌNH BẬC BA y = ax3 + bx2 + cx + d = 0. 1. Phương trình có 3 nghiệm phân biệt. 2. Phương trình có hai nghiệm phân biệt. 3. Phương trình có một nghiệm. 11 PHƯƠNG TRÌNH BẬC BỐN y = ax4 + bx2 + c. 1. Cách giải ax4 + bx2 + c = 0. 2. Phương trình có 4 nghiệm. 3. Phương trình có 3 nghiệm. 4. Phương trình có hai nghiệm. 5. Phương trình có 1 nghiệm. 6. Phương trình vô nghiệm. 7. Phương trình (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. 8. Phương trình hồi quy ax4 + bx3 + cx2 + dx + e = 0 và ad2 = eb2. 9. Phương trình dạng (x + a)4 + (x + b)4 = c. 10. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = rx2 với ab = cd. 11. Phương trình ax4 + bx3 + cx2 + bx + a = 0.

Nguồn: toanmath.com

Đọc Sách

Ôn luyện lớp 9 môn Toán theo chủ đề (tập 2)
Nội dung Ôn luyện lớp 9 môn Toán theo chủ đề (tập 2) Bản PDF - Nội dung bài viết Ôn luyện lớp 9 môn Toán - Chủ đề tập 2Chủ đề 1: Hệ hai phương trình bậc nhất hai ẩnChủ đề 2: Hàm số y = ax2 (a khác 0). Phương trình bậc hai một ẩnChủ đề 3: Góc với đường trònChủ đề 4: Hình trụ, hình nón, hình cầu Ôn luyện lớp 9 môn Toán - Chủ đề tập 2 Chiếc tập sách Ôn luyện lớp 9 môn Toán tập 2 là một nguồn tài liệu vô cùng hữu ích với tổng cộng 199 trang sách. Bao gồm tóm tắt lý thuyết, bài tập và các dạng toán, đây là một công cụ học tập không thể thiếu để học sinh lớp 9 ôn luyện môn Toán một cách hiệu quả. Mục lục của tài liệu này được chia thành các chủ đề cụ thể, giúp học sinh dễ dàng theo dõi và ôn tập theo từng phần như sau: Chủ đề 1: Hệ hai phương trình bậc nhất hai ẩn - Vấn đề 1: Phương trình bậc nhất hai ẩn - Vấn đề 2: Hệ hai phương trình bậc nhất hai ẩn - Vấn đề 3: Giải hệ phương trình bằng phương pháp thế - Vấn đề 4: Giải hệ phương trình bằng phương pháp cộng đại số - Vấn đề 5: Hệ phương trình bậc nhất hai ẩn chứa tham số - Và các vấn đề khác liên quan đến hệ phương trình bậc nhất hai ẩn. - Ôn tập cuối chủ đề 1 để củng cố kiến thức. Chủ đề 2: Hàm số y = ax2 (a khác 0). Phương trình bậc hai một ẩn - Vấn đề 1: Hàm số y = ax2 và đồ thị - Vấn đề 2: Công thức nghiệm của phương trình bậc hai - Và các vấn đề khác liên quan đến phân tích đồ thị hàm số và phương trình bậc hai. - Ôn tập cuối chủ đề 2 để ôn lại kiến thức đã học. Chủ đề 3: Góc với đường tròn - Vấn đề 1: Góc ở tâm, số đo cung - Vấn đề 2: Liên hệ giữa cung và dây - Và các vấn đề liên quan đến góc tạo bởi các yếu tố đường tròn khác nhau. - Ôn tập cuối chủ đề 3 để củng cố kỹ năng giải các bài tập liên quan đến góc và đường tròn. Chủ đề 4: Hình trụ, hình nón, hình cầu - Vấn đề 1: Diện tích xung quanh và thể tích của hình trụ - Vấn đề 2: Diện tích xung quanh và thể tích của hình nón, hình nón cụt - Và các vấn đề liên quan đến diện tích và thể tích các hình khối. - Ôn tập cuối chủ đề 4 để tự tin giải các bài tập về hình trụ, hình nón và hình cầu. Trong tài liệu cũng có phần Hướng dẫn gợi ý đáp án để học sinh có thể tự kiểm tra và tự ôn tập kiến thức một cách hiệu quả nhất. Với cấu trúc rõ ràng, dễ hiểu và sắp xếp logic theo từng chủ đề, tài liệu Ôn luyện lớp 9 môn Toán tập 2 sẽ là người bạn đồng hành đắc lực giúp học sinh chuẩn bị tốt cho kỳ thi cuối kỳ.
Ôn luyện lớp 9 môn Toán theo chủ đề (tập 1)
Nội dung Ôn luyện lớp 9 môn Toán theo chủ đề (tập 1) Bản PDF - Nội dung bài viết Ôn luyện lớp 9 môn Toán theo chủ đề (tập 1)Mục lục: Ôn luyện lớp 9 môn Toán theo chủ đề (tập 1) Được thiết kế với mục đích giúp học sinh lớp 9 ôn luyện Toán theo chủ đề, tài liệu này bao gồm 159 trang chi tiết, bao gồm tóm tắt lý thuyết, bài tập và các dạng toán phong phú. Mục lục: CHỦ ĐỀ 1. CĂN BẬC HAI. CĂN BẬC BA Với các vấn đề như Căn bậc hai, Căn thức bậc hai và hằng đẳng thức, Liên hệ phép nhân, phép chia với phép khai phương, học sinh sẽ được ôn tập và nắm vững kiến thức cơ bản về chủ đề này. CHỦ ĐỀ 2. HÀM SỐ BẬC NHẤT Chủ đề này tập trung vào các khái niệm về hàm số bậc nhất, đồ thị của hàm số bậc nhất, vị trí tương đối giữa hai đường thẳng và hệ số góc của đường thẳng y = ax + b. Cùng với ôn tập, học sinh sẽ hiểu rõ hơn về chủ đề này. CHỦ ĐỀ 3. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG Chủ đề này tập trung vào hệ thức về cạnh và đường cao, tỉ số lượng giác của góc nhọn, và một số hệ thức khác trong tam giác vuông. Qua việc luyện tập, học sinh sẽ rèn luyện kỹ năng tính toán và áp dụng công thức vào thực tế. CHỦ ĐỀ 4. ĐƯỜNG TRÒN Chủ đề cuối cùng tập trung vào sự xác định đường tròn, tính chất đối xứng của đường tròn, đường kính và dây của đường tròn, vị trí tương đối của đường thẳng và tính chất hai tiếp tuyến cắt nhau. Đây là một chủ đề quan trọng và học sinh cần tập trung vào việc hiểu và áp dụng công thức. Đối với mỗi chủ đề, tài liệu cung cấp hướng dẫn và đáp số chi tiết để học sinh có thể kiểm tra và tự ôn tập. Hãy cùng tham gia vào quá trình ôn luyện Toán với tài liệu Ôn luyện lớp 9 môn Toán theo chủ đề (tập 1) để nâng cao kiến thức và kỹ năng của mình!
Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn Toán
Nội dung Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn Toán Bản PDF - Nội dung bài viết Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn ToánPhần I: Đại sốPhần II: Hình học Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn Toán Đối với học sinh lớp 9, tài liệu này gồm 666 trang với tóm tắt lý thuyết, các dạng toán và bài tập môn Toán. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết để học sinh có thể tự học và tự kiểm tra kiến thức của mình. Phần I: Đại số Chương 1 của phần này bao gồm các nội dung về căn bậc hai và căn bậc ba, bao gồm các phép tính căn bậc hai, căn thức bậc hai và các hằng đẳng thức quen thuộc. Học sinh sẽ học về liên hệ giữa phép nhân và phép khai phương, phép chia và phép khai phương, biến đổi biểu thức chứa căn thức bậc hai và rút gọn biểu thức. Chương 2 là về hàm số bậc nhất, bao gồm khái niệm về hàm số, đồ thị của hàm số bậc nhất và các kiến thức liên quan. Chương 3 và chương 4 lần lượt là về hệ hai phương trình bậc nhất hai ẩn và hàm số y = ax2 (a khác 0) cùng các phương trình bậc hai một ẩn và ứng dụng của chúng. Phần II: Hình học Chương 1 bao gồm hệ thức lượng trong tam giác vuông, với nội dung về hệ thức lượng, tỷ số lượng giác, hệ thức về cạnh và góc trong tam giác vuông. Chương 2 tập trung vào đường tròn, bao gồm các tính chất đặc biệt, đường kính và dây của đường tròn, cũng như vị trí tương đối giữa đường tròn và đường thẳng. Chương 3 và chương 4 lần lượt là về góc với đường tròn và các hình học đặc biệt như hình trụ, hình nón và hình cầu, với các công thức tính diện tích xung quanh và thể tích của chúng. Thông qua tài liệu này, học sinh lớp 9 sẽ có cơ hội học tập và ôn tập kiến thức môn Toán một cách dễ dàng và hiệu quả. Tài liệu cung cấp đầy đủ lời giải chi tiết để giúp học sinh hiểu rõ hơn về từng bước giải và áp dụng kiến thức vào thực tế.
Chuyên đề căn bậc hai và căn bậc ba Diệp Tuân
Nội dung Chuyên đề căn bậc hai và căn bậc ba Diệp Tuân Bản PDF - Nội dung bài viết Bộ tài liệu Chuyên đề căn bậc hai và căn bậc ba của thầy Diệp Tuân Bộ tài liệu Chuyên đề căn bậc hai và căn bậc ba của thầy Diệp Tuân Bộ tài liệu này được biên soạn bởi thầy giáo Diệp Tuân và bao gồm 127 trang, nhằm giúp học sinh lớp 9 nắm vững kiến thức về căn bậc hai và căn bậc ba trong chương trình Toán lớp 9. Bộ tài liệu cung cấp tóm tắt lý thuyết, phân loại dạng bài và bài tập minh họa cho các chuyên đề sau: BÀI 1. CĂN BẬC HAI - Dạng 1: Tìm căn bậc hai của một số hoặc tìm số có căn bậc hai đã cho. - Dạng 2: So sánh hai số có liên quan đến căn bậc hai. - Dạng 3: Tìm giá trị của x theo điều kiện cho trước. BÀI 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC - Xác định điều kiện để căn bậc hai có ý nghĩa. - Tính giá trị của biểu thức chứa căn bậc hai. - Giải phương trình, phân tích đa thức thành nhân tử. BÀI 3. LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG - Thực hiện các phép tính liên quan đến phép nhân và phép khai phương. - Phân tích đa thức thành nhân tử và giải phương trình. BÀI 4. LIÊN HỆ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG - Thực hiện phép chia và phép khai phương trong các bài tập. - Giải phương trình và chứng minh bất đẳng thức. BÀI 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI - Rút gọn biểu thức và so sánh phân số. BÀI 7. TRỤC CĂN THỨC Ở MẪU - Khử mẫu của biểu thức chứa căn và so sánh các số. BÀI 8. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI - Rút gọn biểu thức, chứng minh đẳng thức và tìm giá trị biểu thức tại điểm x. BÀI 9. CĂN BẬC BA - Thực hiện các phép tính liên quan đến căn bậc ba và giải phương trình. Bộ tài liệu này sẽ giúp học sinh lớp 9 hiểu rõ hơn về căn bậc hai và căn bậc ba thông qua lý thuyết, ví dụ minh họa và bài tập thực hành.