Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học chuyên đề hàm số lũy thừa - mũ - logarit - Lê Minh Cường

Nhằm tạo nguồn tài liệu dồi dào, phong phú và thích hợp với xu hướng tự học của học sinh. Thầy Lê Minh Cường cùng một số thầy (cô) khác đã dày công biên soạn và sưu tầm các dạng toán trắc nghiệm lớp 12 và cho ra đời tập “TÀI LIỆU TỰ HỌC – TOÁN 12, Vol.1” để đáp ứng nhu cầu học sinh cũng như làm thỏa mãn tính tự học ở những bạn đã sớm ý thức được kỹ năng cần thiết này. Tài liệu gồm 55 trang tóm tắt lý thuyết, công thức, các ví dụ có lời giải và các bài toán trắc nghiệm có đáp án chuyên đề hàm số lũy thừa – mũ – logarit (Chương 2 Giải tích 12). Nội dung gồm các phần: Công thức lũy thừa – mũ – logarit  1. Rút gọn biểu thức lũy thừa 2. So sánh 3. Biến đổi biểu thức Logarit 4. Phân tích biểu thức Logarit 4.1. Biểu diễn theo 1 biến 4.2. Biểu diễn theo 2 biến 5. Tính biểu thức logarit Hàm số lũy thừa – Mũ – Logarit  1. Tìm tập xác định 1.1. Hàm lũy thừa 1.2. Hàm logarit 2. Tìm đạo hàm 2.1. Hàm mũ và lũy thừa 2.2. Hàm logarit [ads] 3. Tìm tập xác định và tính đạo hàm các hàm phức tạp 4 Tính chất hàm số 4.1. Tính đơn điệu của hàm chứa mũ – logarit 4.2. Cực trị, giới hạn, tiệm cận của hàm chứa mũ – logarit 4.3. Tính chất đồ thị hàm chứa mũ – logarit 4.4. Giá trị lớn nhất và nhỏ nhất của hàm số chứa mũ – logarit 4.5. Hàm mũ – logarit có tham số PT – BPT mũ và logarit  1. Phương trình mũ 1.1. Phương trình cơ bản 1.2. Đặt ẩn phụ 1.3. Phương pháp khác 1.4. Phương trình chứa tham số 1.5. Sử dụng tính đơn điện của hàm số 2. Phương trình logarit 2.1. Phương trình cơ bản 2.2. Phương pháp đặt ẩn phụ 2.3. Phương trình logarit chứa tham số 3. Bài tập nâng cao về phương trình 4. Bất phương trình mũ 4.1. Bất phương trình cơ bản 4.2. Các phương pháp khác 5. Bất phương trình logarit 5.1. Cơ bản 5.2. Bất phương trình tổng hợp Bài toán thực tế

Nguồn: toanmath.com

Đọc Sách

Bất phương trình lôgarit không chứa tham số
Tài liệu gồm 22 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Bất phương trình lôgarit không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI BẤT PHƯƠNG TRÌNH LÔGARIT BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) Dạng 1 : Bất phương trình có dạng F x 0 với F x là hàm số đồng biến hoặc nghịch biến trên D: Bước 1. Đưa bất phương trình về dạng F x 0. Bước 2. Xét hàm số y Fx. Chỉ rõ hàm số y Fx đồng biến hoặc nghịch biến trên D. Bước 3. Dự đoán 0 F x 0 từ đó kết luận nghiệm của bất phương trình. Dạng 2 : Bất phương trình có dạng Fu Fv với F x là hàm số đồng biến hoặc nghịch biến trên D. Bước 1. Đưa bất phương trình về dạng Fu Fv. Bước 2. Xét hàm số y Fx. Chỉ rõ hàm số y Fx đồng biến hoặc nghịch biến trên D. Bước 3. Bất phương trình Fu Fv u v nếu y Fx là hàm đồng biến và Fu Fv u v nếu y Fx là hàm nghịch biến. GIẢI BẤT PHƯƠNG TRÌNH LÔGARIT BẰNG PHƯƠNG PHÁP HÀM ĐẶC TRƯNG (KHÔNG CHỨA THAM SỐ) Cho hàm số y fx đồng biến trên a b và uv ab thì f u fv u v. Cho hàm số y fx nghịch biến trên a b và uv ab thì f u fv u v. GIẢI BẤT PHƯƠNG TRÌNH LÔGARIT BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) Đặt ẩn phụ t theo biểu thức logarit của ẩn x. Khi đó thu được phương trình ẩn t. Giải phương trình ẩn t ta được nghiệm t theo ẩn x. Giải phương trình thu được nghiệm của phương trình.
Bất phương trình mũ chứa tham số
Tài liệu gồm 20 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Bất phương trình mũ chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Đưa về cùng cơ số. Nếu a 1 thì f x g x a a f x g x. Nếu 0 1 a thì f x g x a a f x g x. Đặt ẩn phụ. Sử dụng tính đơn điệu: Hàm số y f x đồng biến trên D thì f u f v u v u v D. Hàm số y f x nghịch biến trên D thì f u f v u v u v D. Có bao nhiêu giá trị nguyên của tham số m 2021 2021 để bất phương trình 1 1 27 3 27 x m m có nghiệm? Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 3 5 2 x x m nghiệm đúng với mọi 2 x log 5. Hỏi có tất cả bao nhiêu giá trị nguyên của m thuộc [-30;30] để bất phương trình 2 x x x m m đúng với 1 2 x? Gọi S là tập chứa tất cả những giá trị nguyên m [-20;20] để bất phương trình đúng với mọi x 2 2 sin 1 cos 3 x x m. Số phần tử của tập S là?
Bất phương trình mũ không chứa tham số
Tài liệu gồm 24 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Bất phương trình mũ không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Nhắc lại kiến thức cũ: Đạo hàm: ln u u a ua a. Nếu hàm số f đồng biến trên khoảng D thì xy D f x f y x y. Nếu hàm số f nghịch biến trên khoảng D thì xy D f x f y x y. Bước 1 : Đặt điều kiện của bpt (nếu có). Bước 2 : Các phương pháp giải: Phương pháp 1 : Dùng tính đơn điệu của hàm số. Phương pháp 2 : Dùng phương pháp đồ thị hàm số. Phương pháp 3 : Đánh giá. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶC TRƯNG KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng fa fb fa fb fa fb fa fb. Bước 2 : Xét hàm số y fx chứng minh hàm số luôn đồng biến hoặc luôn nghịch biến. Bước 3 : Do hàm số y fx luôn đồng biến, hoặc luôn nghịch biến suy ra fa fb a b hoặc fa fb a. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Đặt u x T a với T > 0. Bất phương trình biến đổi về dạng 2 AT g x T h x hoặc 2 AT g x T h x. Bước 1 : Giải phương trình 2 AT g x T h x 0. Bước 2 : Lập bảng xét dấu của 2 AT g x T h x. Bước 3 : Từ bảng kết luận.
Phương trình lôgarit chứa tham số
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình lôgarit chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. Tìm m để f x m 0 có nghiệm (hoặc có k nghiệm) trên D trong phương trình logarit chứa tham số: Bước 1. Tách m ra khỏi biến số và đưa về dạng f x A m. Bước 2. Khảo sát sự biến thiên của hàm số f x trên D. Bước 3. Dựa vào bảng biến thiên để xác định giá trị của tham số m để đường thẳng y A m nằm ngang cắt đồ thị hàm số y f x. Bước 4. Kết luận các giá trị cần tìm của m để phương trình f x A m có nghiệm (hoặc có k nghiệm) trên D. Lưu ý: Nếu hàm số y f x có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A m cần tìm là những m thỏa mãn: min max x D x D f x A m f x. Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y A m nằm ngang cắt đồ thị hàm số y f x tại k điểm phân biệt. Lưu ý quan trọng: Các bước giải phương trình logarit có tham số cần chú ý: Bước 1. Đặt điều kiện (điều kiện đại số điều kiện loga) Bước 2. Dùng các công thức và biến đổi đưa về các phương trình cơ bản rồi giải. Bước 3. So với điều kiện và kết luận giá trị tham số cần tìm.