Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tam Dương - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tam Dương, tỉnh Vĩnh Phúc; đề thi hình thức 100% tự luận với 09 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề thi HSG huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho a, b, c là độ dài ba cạnh của tam giác ABC thỏa mãn hệ thức a3 + b3 + c3 = 3abc. Hỏi tam giác ABC là tam giác gì? + Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N. + Trên tờ giấy kẻ vô hạn các ô vuông và được tô bởi các màu đỏ hoặc xanh thỏa mãn: bất cứ hình chữ nhật nào có kích thước 2×3 thì có đúng hai ô màu đỏ. Hỏi hình chữ nhật có kích thước 2022 x 2023 có bao nhiêu ô màu đỏ.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 29 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Tìm các số nguyên tố a, b, c và số nguyên dương k thỏa mãn a2 + b2 + 16c2 = 9k2 + 18k + 10. + Cho hình vuông ABCD. Đường thẳng d đi qua C cắt hai tia AB, AD lần lượt tại M và N (AB < AM < AN). Gọi E là giao điểm của BC và DM; F là giao điểm của CD và BN; H là giao điểm của BN và DM. 1. Chứng minh EF song song với MN. 2. Chứng minh ADM đồng dạng với DFA và H là trực tâm của AEF. 3. Gọi giao điểm của AH và BC là K, giao điểm của AH và MN là O, giao điểm của MK và AC là I. Chứng minh MI/KI + AO/KO + CB/KB > 9.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho hình vuông ABCD, gọi O là giao điểm của AC và BD. Lấy điểm M là trung điểm của AD và điểm G trên đoạn thẳng OA sao cho GA = 2GO. Đường thẳng DG cắt cạnh AB tại điểm F. Đường thẳng CM cắt các đường thẳng BD và DF lần lượt tại điểm K và E. 1) Chứng minh rằng F là trung điểm của AB và CM vuông góc với DF. 2) Chứng minh GK // AD. 3) Đường thẳng BE cắt GK tại điểm P. Chứng minh PG = PK. + Cho A = (a + b + c)3 – a3 – b3 – c3 với a, b, c là ba số tự nhiên trong đó có đúng một số lẻ và hai số chẵn. Chứng minh rằng A chia hết cho 6.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Bác Hoàng gửi vào ngân hàng 500 triệu đồng theo thể thức lãi kép theo định kì với lãi suất 5,5% mỗi năm (tức là nếu đến hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn kì kế tiếp). Tính số tiền bác Hoàng nhận được sau 3 năm là (cả gốc và lãi). + Đường quốc lộ và đường ống dẫn dầu cắt nhau tạo thành một góc nhỏ hơn 45o, trong góc này có bãi đỗ xe ô tô ở vị trí A (hình vẽ). Cần phải xây trạm cung cấp xăng ở vị trí nào trên đường ống để các loại xe xuất phát từ bãi đỗ xe A đến cây xăng rồi ra đường quốc lộ với đường đi ngắn nhất. + Cho hình vuông ABCD, trên cạnh AB lấy điểm M bất kỳ (không trùng với A, B). Gọi H là chân đường vuông góc hạ từ B xuống MC. 1. Chứng minh: BH2 = HM.HC. 2. Đường thẳng qua D vuông góc với DM cắt đường thẳng BC tại K; đường thẳng qua D vuông góc với MK cắt BC tại E. Chứng minh: ∆ KDM vuông cân và ∆ DKE đồng dạng với ∆ BKD. 3. Trên cạnh BC lấy điểm N sao cho BN = BM. Chứng minh rằng: khi điểm M di chuyển trên cạnh AB thì góc DHN luôn có số đo không đổi.
Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Yên Phong - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi huyện cấp THCS môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Phong, tỉnh Bắc Ninh. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Yên Phong – Bắc Ninh : + Tìm tất cả các số tự nhiên n sao cho số A = 2n + 3n + 4n là số chính phương. + Cho tam giác nhọn ABC (AB < AC), có đường cao AH sao cho AH = HC. Trên AH lấy điểm I sao cho HI = BH. Gọi P và Q lần lượt là trung điểm của BI và AC. Gọi N và M lần lượt là hình chiếu vuông góc của H trên AB và IC. Gọi K là giao điểm của CI và AB. Gọi D là giao điểm của BI và AC. a) Chứng minh I là trực tâm của tam giác ABC. b) Chứng minh tứ giác HNKM là hình vuông. c) Chứng minh bốn điểm N, P, M, Q thẳng hàng. + Cho tam giác ABC nhọn và không cân có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong của tam giác, G là trọng tâm của tam giác ABC. Chứng minh rằng IG // BC.