Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vở bài tập Toán 9 tập 1 phần Đại số

Tài liệu gồm 172 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Đại số. CHƯƠNG 1 . CĂN BẬC HAI – CĂN BẬC BA. Bài 1. CĂN BẬC HAI SỐ HỌC. Dạng 1: Tìm căn bậc hai, căn bậc hai số học của một số. Dạng 2: Tính giá trị của biểu thức chứa căn bậc hai. Dạng 3: Tìm giá trị của x thỏa mãn biểu thức cho trước. Dạng 4: So sánh các căn bậc hai số học. Bài 2. CĂN THỨC BẬC HAI. HẰNG ĐẲNG THỨC BẬC HAI. Dạng 1: Tìm giá trị của biểu thức chứa căn bậc hai. Dạng 2: Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Giải phương trình. Bài 3. LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG. Dạng 1: Khai phương một tích. Dạng 2: Nhân các căn bậc hai. Dạng 3: Rút gọn, tính giá trị của biểu thức. Dạng 4: Viết biểu thức dưới dạng tích. Dạng 5: Giải phương trình. Dạng 6: Chứng minh bất đẳng thức. Bài 4. LIÊN HỆ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG. Dạng 1: Khai phương một thương. Dạng 2: Chia các căn bậc hai. Dạng 3: Rút gọn, tính giá trị của biểu thức. Dạng 4: Giải phương trình. Bài 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI. Dạng 1: Đưa thừa số ra ngoài dấu căn. Dạng 2: Đưa thừa số vào trong dấu căn. Dạng 3: So sánh hai số. Dạng 4: Rút gọn biểu thức. Dạng 5: Tìm x. Bài 7. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI (tiếp theo). Dạng 1: Khử mẫu của biểu thức lấy căn. Dạng 2: Trục căn thức ở mẫu. Dạng 3: Rút gọn biểu thức. Dạng 4: Chứng minh đẳng thức. Bài 8. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI. Dạng 1: Rút gọn biểu thức chỉ chứa cộng, trừ căn thức. Dạng 2: Rút gọn biểu thức có chứa các phép toán cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. Dạng 3: Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biến để biểu thức thỏa điều kiện nào đó. Dạng 4: Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất khác hoặc tìm GTLN, GTNN của biểu thức. Dạng 5: Chứng minh đẳng thức. Bài 9. CĂN BẬC BA. Dạng 1: Tìm căn bậc ba của một số. Dạng 2: So sánh. Dạng 3: Thực hiện các phép tính. Bài. ÔN TẬP CHƯƠNG I. Dạng 1: Tìm điều kiện để căn thức xác định (hay có nghĩa). Dạng 2: Rút gọn biểu thức. Tính giá trị của biểu thức. Dạng 3: Chứng minh biểu thức có một tính chất nào đó. Dạng 4: Giải phương trình. CHƯƠNG 2 . HÀM SỐ BẬC NHẤT. Bài 1-2. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM HÀM SỐ HÀM SỐ BẬC NHẤT. Dạng 1: Tìm giá trị của biến số để hàm số được xác định. Dạng 2: Tính giá trị của hàm số khi biết giá trị của biến số và ngược lại. Dạng 3: Biểu diễn điểm trên mặt phẳng tọa độ. Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ. Dạng 4: Điểm thuộc hoặc không thuộc đồ thị hàm số. Dạng 5: Xác định hàm số bậc nhất. Dạng 6: Xét tính đồng biến, nghịch biến của hàm số. Bài 3. ĐỒ THỊ HÀM SỐ y = ax + b (a khác 0). Dạng 1: Vẽ đồ thị hàm số y = ax + b (a khác 0). Dạng 2: Tìm tham số m biết hàm số đi qua điểm cho trước. Dạng 3: Xác định giao điểm của hai đường thẳng. Dạng 4: Xét tính đồng quy của ba đường thẳng. Dạng 5: Tính khoảng cách từ góc tọa độ đến một đường thẳng cho trước không đi qua O. Bài 4. ĐƯỜNG THẲNG SONG SONG VÀ ĐƯỜNG THẲNG CẮT NHAU. Dạng 1: Xét vị trí tương đối của hai đường thẳng. Dạng 2: Xác định phương trình đường thẳng thỏa mãn điều kiện. Bài 5. HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG y = ax + b (a khác 0). Dạng 1: Tìm hệ số góc của đường thẳng. Dạng 2: Xác định góc tạo bởi đường thẳng và trục Ox. Dạng 3: Xác định phương trình đường thẳng khi biết hệ số góc. Bài. ÔN TẬP CHƯƠNG II. Dạng 1: Tìm điều kiện của biến x để hàm số được xác định. Dạng 2: Tìm giá trị của tham số để hàm số là hàm số bậc nhất. Dạng 3: Xét sự đồng biến nghịch biến rồi tính giá trị của hàm số. Dạng 4: Xác định giao điểm của hai đường thẳng. Dạng 5: Xác định phương trình đường thẳng y = ax + b thỏa mãn điều kiện cho trước. Dạng 6: Xác định góc tạo bởi đường thẳng và trục Ox. ĐỀ KIỂM TRA CHƯƠNG II – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG II – ĐỀ SỐ 2.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa phép nhân - phép chia và phép khai phương
Tài liệu gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề liên hệ giữa phép nhân và phép khai phương, liên hệ giữa phép chia và phép khai phương, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN + Dạng toán 1. Thực hiện phép tính. + Dạng toán 2. Rút gọn biểu thức và tính giá trị biểu thức. + Dạng toán 3. Giải phương trình. + Dạng toán 4. Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN PHẢN XẠ CÁC DẠNG
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 18 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề nhắc lại và bổ sung các khái niệm về hàm số, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ 1. Khái niệm hàm số. Nếu đại lượng y phụ thuộc vào đại lượng x thay đổi sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x (x gọi là biến số). 2. Giá trị của hàm số, điều kiện xác định của hàm số. Giá trị của hàm số f(x) tại điểm x0 kí hiệu là y0 = f(x0). Điều kiện xác định của hàm số y = f(x) là tất cả các giá trị của x sao cho biểu thức f(x) có nghĩa. 3. Đồ thị của hàm số. Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm M(x;y) trong mặt phẳng tọa độ Oxy sao cho x, y thỏa mãn hệ thức y = f(x). 4. Hàm số đồng biến và hàm số nghịch biến. Cho hàm số y = f(x) xác định với mọi giá trị x thuộc R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R. B. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. Dạng 3. Xét sự đồng biến và nghịch biến của hàm số. Dạng 4. Nâng cao và phát triển tư duy. C. TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề căn bậc hai, căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề căn bậc hai, căn thức bậc hai và hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 1 – 2. A. KIẾN THỨC TRỌNG TÂM I. Căn bậc hai số học. II. Căn thức bậc hai. B. BÀI TẬP MINH HỌA I. BÀI TẬP VÀ CÁC DẠNG BÀI TỰ LUẬN. Dạng toán 1. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng toán 2. Tính giá trị biểu thức chứa căn bậc hai. Dạng toán 3. Rút gọn biểu thức chứa căn bậc hai. Dạng toán 4. Giải phương trình chứa căn bậc hai. Dạng toán 5. Bài toán nâng cao. II. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ. III. TỰ LUYỆN. Dạng toán 1. Tính giá trị của biểu thức chứa căn bậc hai. Dạng toán 2. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng toán 3. Rút gọn biểu thức chứa căn bậc hai. Dạng toán 4. So sánh hai biểu thức chứa căn bậc hai. Dạng toán 5. Phân tích đa thức thành nhân tử. Dạng toán 6. Giải phương trình chứa căn bậc hai.
Chuyên đề hình học không gian Toán 9 Hình trụ - Hình nón - Hình cầu
Tài liệu gồm 30 trang, hướng dẫn phương pháp giải các dạng toán hình học không gian Toán 9: Hình trụ – Hình nón – Hình cầu, giúp học sinh học tốt chương trình Hình học 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1. HÌNH TRỤ. I. Lý thuyết. 1. Hình trụ. 2. Cắt hình trụ. 3. Diện tích xung quanh của hình trụ. 4. Thể tích hình trụ. II. Bài tập. CHỦ ĐỀ 2. HÌNH NÓN. I. Lý thuyết. 1. Hình nón. 2. Diện tích xung quanh của hình nón. 3. Thể tích hình nón. 4. Hình nón cụt. 5. Diện tích xung quanh và thể tích hình nón cụt. II. Bài tập. CHỦ ĐỀ 3. HÌNH CẦU. I. Lý thuyết. 1. Hình cầu. 2. Cắt hình cầu. 3. Diện tích mặt cầu. 4. Thể tích hình cầu. II. Bài tập. BÀI TẬP TỔNG HỢP.