Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM

Nội dung Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM Bản PDF - Nội dung bài viết Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán lớp 8 năm học 2016 - 2017. Đề thi kiến thức Toán môn Toán lớp 8 năm 2016 - 2017 của phòng GD&ĐT Quận 1 - TP HCM đã được công bố với đáp án và lời giải chi tiết. Trong đề thi, có một số câu hỏi thú vị như sau: + Đề bài 1: Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh lớp 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh lớp 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Hãy tìm số học sinh ban đầu của mỗi lớp. + Đề bài 2: Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: tam giác HED đồng dạng với tam giác HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Đề bài 3: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M sao cho tổng bình phương x2 + y2 + z2 đạt giá trị nhỏ nhất. Đề thi này không chỉ giúp học sinh rèn luyện và kiểm tra kiến thức mà còn khuyến khích họ tìm hiểu sâu và áp dụng lý thuyết vào thực hành. Chắc chắn rằng đề thi sẽ đem lại nhiều trải nghiệm bổ ích cho các em học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân; b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. + Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. + Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2 22 2017 2017 2017 2017 1.
Đề thi HSG cấp huyện Toán 8 năm 2016 - 2017 phòng GDĐT Cẩm Xuyên - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh. Trích dẫn đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. + Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. + Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho hình vuông ABCD. Qua A vẽ hai đưởng thẳng d và d’ vuông góc với nhau. Biết d cắt BC và CD lần lượt tại R và S, d’ cắt BC và CD ở P và Q. a) Chứng minh các tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H. Gọi M và N lật lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh MN là đường trung trực của AC. + Chứng minh rằng trong một hình thang cân, bình phương của đường chéo bằng bình phương của cạnh bên cộng với tích của hai đáy. + Tìm giá trị nhỏ nhất của biểu thức: M.
Đề thi HSG Toán 8 năm 2016 - 2017 phòng GDĐT Phù Ninh - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ : + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). 1. Chứng minh tam giác AMN vuông cân và AN2 = NC.NP. 2. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. 3. Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM2 + 1AQ2 không đổi khi điểm M thay đổi trên cạnh BC. + Tỉ số các cạnh bé nhất của hai tam giác đồng dạng bằng 2/5. Tính chu vi P và P’ của hai tam giác đó biết P’ – P = 18 cm. + Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Diện tích của tam giác đó là?